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We experimentally observe the SNR degradation of previously established services induced by loading new 
services in a network, and mitigate this degradation by periodic power re-optimization via 2 different strategies: 1) 
a static strategy based on end-of-life parameters, and 2) a dynamic strategy based on real-time monitoring to the 
current state of the network. We use a mesh network testbed of 4 nodes and 5 links with commercial equipment 
only. We observe up to 3.4 dB SNR degradation on the previously established services due to the loading of new 
services. Then we demonstrate an improvement of up to 3.2 dB in the network margin achieved by applying our 
proposed power re-optimization strategy. ©2022 The Author(s)  
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1. INTRODUCTION 
With the advent of the globalized information age, people’s reliance 

on Internet services has increased dramatically. Optical fiber networks 
are used as Internet backbone, and have evolved vastly over the past 
decades through techniques such as Wavelength Division Multiplexing 
(WDM), advanced optical digital signal processing, improved fiber 
design and manufacturing, advances in optical amplifiers, etc. Recently, 
with the emergence of 5G (and soon 6G) services, new communication 
patterns driven by services in new areas as Internet of Thing (IoT), 
smart homes, unmanned smart driving, etc. [1] are appearing in 
backbone networks, and they will bring new practical challenges to 
current optical networks. New more robust and larger-capacity optical 
networks are urgently needed to meet growing needs of these new 
services.  

High Quality of Transmission (QoT), such as low Bit Error Rate (BER) 
or high Signal-to-Noise Ratio (SNR), of services in optical networks is 
key to ensure large capacity and robustness of services in an optical 
network. Services in optical networks co-propagate, over different 
wavelengths, with other services through one or several links or Optical 
Multiplex Sections (OMSes); hence, services’ SNRs can be impacted by 
many load-dependent physical effects such as Kerr effect (i.e. Self-Phase 
Modulation (SPM), Cross-Phase Modulation (XPM), Four-Wave Mixing 
(FWM)), Stimulated Raman Scattering (SRS), Wavelength Dependent 
Loss (WDL), and load-dependent gain spectrum of Erbium-Doped Fiber 
Amplifiers’ (EDFA), thus the Amplified Spontaneous Emission (ASE) 
noise. These load-dependent effects make SNR of established services 
vary upon load changes, e.g. upon new services establishment or 
dropping, or simply upon power variations of the established services. 

SNR variations induced by load change may cause the service QoT to 
decrease below the SNR that corresponds to the Forward Error 
Correction (FEC) threshold, thereby causing outages. 

To avoid service disruption in the cases described above, network 
designers are posed with the challenge to allocate enough design 
margins at network design time. In fact, reducing overall design 
margins, while making sure that the SNR margin of the service closest to 
FEC limit is maximized, can translate into increasing operation margins, 
which makes networks more robust to aging (e.g., due to fiber 
attenuation increase caused by fiber splices), or increase the capacity of 
optical networks, longer networks’ life, and less deployment cost 
(CAPEX) or total cost of ownership during networks’ life [2]. 

When accomodating new services into the network, certain 
operators prefer using the so-called “set and forget” operation mode 
[3,4,5] to set their powers. In “set and forget” mode, powers of new 
services are set using a pre-defined rule (e.g., powers are optimized for 
a fully loaded network); while, the powers of previously established 
services are not touched, thereby their powers, hence their SNRs, are left 
to drift without being adjusted to the new network state. 

To maintain services running at their optimum SNR, powers of all 
services, both previous and new, can be re-optimized with different 
strategies upon any network layer change. Power re-optimization 
strategy (or “power re-equalization”) consists of allocating power to 
each service by properly actuating the per-channel attenuation of the 
Wavelength Selective Switch (WSS) at the beginning of each OMS [9,10]. 
Through power re-optimization, the SNR of the worst service can be 
maintained at its optimum level, which helps to decrease design margin 
and increase operation margins. However, it has also to be taken into 
account that, providing a reliable dynamic solution is challenging as the 



transient of the devices has to be kept under control, also the scalability 
of the solution as well as the time required by the devices to converge to 
the new configuration. Some of these issues are, for instance, addressed 
in [6]. 

This paper is an extended version of our ECOC 2022 paper [11]. The 
aim of this paper is two-fold. First, we experimentally quantify the SNR 
degradation of previously established services as new services are 
established in a realistic mesh network. Second, we experimentally 
quantify and compare the network margin improvement of both 
previously established and new services when using two existing 
power re-optimization strategies.  

In this experiment work, our mesh network testbed consists of 4 
nodes and 5 OMSes with heterogeneous span type and length built with 
only commercial equipment that would be deployed at operators’, and 
up to 292 services are established. Our experiment demonstate SNR 
variations due to load change of several dBs, which can be fully 
recovered through proper power re-optimization strategies. We also 
show good match between the predicted SNR (that we obtained using a 
digital twin) and the measured SNR after power re-optimization, which 
ensures good reliability of applying power re-optimization strategies. 

The remainder of the paper is structured as follows. In Section 2, we 
introduce two power optimization strategies to mitigate SNR 
degradation due to loading new services in the network. In Section 3, we 
introduce the network loading scenario where procedures of services’ 
loading and power re-optimization are described. In Section 4, we 
introduce our 5-OMS mesh network testbed. In Section 5, we 
experimentally evaluate the SNR degradation induced by loading new 
services, and the SNR improvement by applying power re-optimization 
strategies. 

2. POWER OPTIMIZATION STRATEGIES 
In this section, we define two different power optimization strategies, 

1) a static End-of-Life design strategy (static strategy) and 2) a dynamic 
real-time strategy (dynamic strategy), to mitigate SNR degradation of 
previously established services caused by loading new services in the 
network. These power optimization techniques are implemented by 
setting the per-channel launch output power at the first (“booster”)  
amplifier of each OMS in a network.  

A. Static End-of-life (EoL) design strategy 

The first strategy is based on a “static” End-of-Life (EoL) design 
strategy, which consists in computing the launch power based on EoL 
assumptions, therefore, it never changes during network lifetime. To set 
the EoL launch power, only “static” parameters are used. These 
parameters can be obtained at the design stage or at the initial 
commissioning of the network at Beginning of Life (BoL) (see Tab. 1), 
namely, fiber length, fiber type, span loss, and estimated connector loss. 
This static EoL strategy sets the launch power based on the Local-
Optimum Global-Optimum (LOGO) formula [7], that assumes Full 
Spectral Load (FSL). LOGO aims at optimizing SNR of the worst channel 
at OMS level by providing a flat power allocation (PLOGO) as input power 
into the fiber for each span by means of the analytical formula: 

𝑷𝑳𝑶𝑮𝑶 = √
𝑷𝑨𝑺𝑬

𝟐𝜼

𝟑
.   (1) 

PLOGO is derived under the assumptions of flat power spectrum, flat 
amplifier gain spectrum, flat fiber attenuation, and the SRS effect is not 
taken into account. PASE is the ASE noise power generated by the EDFA 
and η is the nonlinear efficiency evaluated under FSL assumption. 

Since static, BoL parameters are used for this power re-optimization 
throughout the network life, until EoL, this strategy is suboptimal.  

B. Dynamic real-time strategy 

The “dynamic” real-time strategy also aims at optimizing the SNR of 
the worst channel at each OMS, but in a dynamic fashion. The optimal 
launch power provided by the dynamic strategy is calculated based on 
Gaussian noise (GN) model [7,8] considering wavelength-dependent 
gain spectrum, wavelength dependent fiber attenuation, and the SRS 
effect so that the power ratio of ASE noise to nonlinearity is 3 dB for each 
channel at OMS level [9,12]. The dynamic strategy requires not only 
“static” parameters, but also real-time parameters obtained from the 
monitoring of the network, either directly (output power spectrum of 
the first and last amplifiers at each OMS, total input and output powers 
at each amplifier) or indirectly through parameters refinement 
(connector losses, gain spectra, power spectra of the in-line amplifiers) 
[13]. This strategy relies on real-time monitoring of the network, 
therefore, it can provide dynamic changes to the network state. The 
optimal power per channel at the booster of each OMS has been 
computed and adjusted with current network configuration to attain 
the heuristic rule targeting 3 dB for the ASE noise to non-linear power 
ratio for each channel at each OMS similarly to [9,12].  

In the following results, we observe that this dynamic power re-
optimization strategy outperforms the static strategy thanks to the 
feedback of real-time monitoring. 

TAB. 1 Required parameters for power re-optimization. 
“Static” parameters (design and 

commissioning) 
“Dynamic” parameters (real-

time monitoring) 
fiber type; fiber length; span 

loss; connector loss (estimated) 
total input and output powers 

at each amplifier; output power 
spectrum at WSS sides at each 

OMS; gain, power profiles of the 
in-line amplifiers (estimated) 

 

3. NETWORK LOADING SCENARIO 
We consider a mesh optical network where we progressively load 

services and periodically apply power re-optimization for all the 
existing (previous and new-loaded) services. Sources and destinations 
of services are randomly picked among network nodes. Without loss of 

Fig. 1 Flowchart of the experiment. 
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generality of our results, we assume service route is selected using a 
shortest path routing algorithm, and we apply a first-fit wavelength 
assignment to load services from long to short wavelength in the 
network. If a service is blocked due to lack of resources, we simply select 
a new demand, until the full load is achieved. The flowchart of the 
experiment is shown in Fig. 1.  

For each services batch N:  
• Sequentially establish each new service of batch N and set its 

launch power for each crossed OMS with the static EoL design 
power (PLOGO) (Section 2-A); We do not re-optimize previous 
services from the same batch in this step;  

• Once all services of one batch are loaded, apply power re-
optimization strategy on all existing (previous and new) 
services with either: a) “set and forget” (i.e., do nothing), b) static 
power strategy (Section 2-A) or c) dynamic power strategy 
(Section 2-B);  

• Measure SNRs of all existing services in the network;  
• Repeat with next batch N+1 until network becomes fully loaded. 
Note that with “set and forget” mode, the launch power of each new 

service is set as PLOGO, but never re-optimized regardless of power drift 
induced by loading new services in the network. 

4. EXPERIMENTAL TESTBED 
We experimentally implement in our lab a mesh network with 4 

nodes (A, B, C, D), 5 (unidirectional) OMSes, whose topology is depicted 
in Fig. 2(a). Tab. 2 shows the routing table of 12 paths with 
corresponding source node, sink node, crossed OMS, and path lengths. 
Span informations such as span number, fiber type, fiber length of each 

OMS are shown both in Fig. 2(a) and Tab. 3. Since the traffic demand is 
increasing exponentially in recent years, we emulate exponential 
number of arrivals of new services by progressively loading 7 batches of 
services having size: 5, 5, 10, 20, 40, 80 and 132. Hence, over the time, 
the total number of services in the network will be 5, 10, 20, 40, 80, 160 
and 292 after loading each new batch. In the experiment, the network is 
fully loaded when 292 services are loaded and all the wavelengths (80 
channels of 75GHz on the 6THz C band) on all links are occupied.  

Fig. 3(a) shows the allocation statistics for each batch; note that the 
maximum service length is 1140 km and the average service lengths in 
each batch are similar to service lengths in real typical large metro or 
small core networks.  

 

TAB. 2 Routing table. 
Source Sink Path Length(km) 

A B OMS2 500 
A C OMS2-OMS3 1000 
A D OMS2-OMS5 740 
B A OMS3-OMS1 640 
B C OMS3 500 
B D OMS5 240 
C A OMS1 400 
C B OMS1-OMS2 900 
C D OMS1-OMS2-OMS5 1140 
D A OMS4-OMS1 560 
D B OMS4-OMS1-OMS2 1060 
D C OMS4 160 

Fig. 2: (a) Topology of the experimental mesh network; (b) AI-Light SDN framework. 
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Fig. 4 shows some further details of the experimental testbed. Only 
commercial equipment is used to implement the network. The 
transmitter (TX) of the transponder is connected to a WSS whose ports 
are connected to each OMS (blue dots shown in Fig. 4). Then the egress 
of each OMS is connected to a port of a WSS (orange dots shown in Fig. 
4) which is connected to the receiver (RX) of the transponder. Such  

architecture is used to automate the SNR measurement of different 
paths in the network. The real-time commercial transponder generates 
a Polarization-Division-Multiplexed QPSK signal with 68Gbaud baud 
rate, 200 Gb/s bit rate with 75GHz channel spacing. In addtion, we rely 
on an ASE source when we progressively load the network to emulate 
all the services that are allocated in the network. ASE source is 
connected using a coupler to each OMS (purple dots shown in Fig. 4). 
The launch power of these dummy services is set at the targeted value 
computed by power optimization strategies, i.e., static or dynamic 
strategy. Then, we measure the SNR of each service by sequentially 
replacing each dummy service with the signal generated from the 
commercial transponder. We measure the pre-FEC BER and we apply 
the back-to-back curve of the transponder to obtain the measured SNR 
as shown in [14]. ASE source is the only part in the experiment that does 
not rely on commercial equipment. To monitor power spectrums, we 
use an Optical Power Meters (OPM) and Optical Spectrum Analyzer 
(OSA). Power monitoring points are marked as red (by OPM or OSA) 
and black (by OSA). OPM is a commercial product that monitors the per-
channel output power at the first and last amplifier of each OMS, as in a 
real network, rather than a lab-grade OSA (an OPM is a low-cost OSA 
with lower accuracy), while OSA monitors the output power spectrum 
of each amplfier, however, it is not involved in the optimization process 
nor in the configuration of the network. The OSA has been only used to 
better observe and analyze results. All monitoring points are connected 
with fiber switches so that the power spectrum of interest can be 
switched and monitored. Optical amplifiers and WSSes are also 
commercial products. Unless otherwise stated, we use only information 
available in real networks such as total input/output power monitored 
by photodiodes at each amplifier, output power spectrum at the first 
and last amplifier of each OMS (with an OPM as explained above), fiber 
length and fiber type of each span. In addition, to save time, we 
measured the SNR values of only odd-indexed services, hence half of the 
services. Without loss of generality, we report SNR margin which is 
defined as: 

𝑺𝑵𝑹 𝒎𝒂𝒓𝒈𝒊𝒏 = 𝑺𝑵𝑹𝒎𝒐𝒏𝒊𝒕𝒐𝒓𝒆𝒅 − 𝑺𝑵𝑹𝑭𝑬𝑪    (2) 

where SNRmonitored is the monitored SNR by the real-time transponder 
and SNRFEC is the minimum sufficient SNR that service needs for a 
successful transmission, which corresponds to FEC threshold.   

Fig. 2(b) summarizes the relation among service management, real-
time monitoring, data collection, GN-model based SNR estimation and 
power re-optimization with our Autonomous Driving Network “AI-
Light” Software Defined Networking (SDN) platform described in [14], 
which implements a digital twin. Our digital twin works similarly as 
GNPy [15], and we leverage it to compute optimal launch power of the 
dynamic power optimization strategy (Section 2-B) considering all 
load-dependent effects as described in Section 1, and also non-load-
dependent effects such as WSS filtering and transponder back-to-back 
noise. The validation of our digital twin is shown in Section 5-C. 

Tab. 3 shows the computed PLOGO per span per OMS based on the 
“static” parameters. Note that PLOGO of each span is also used to configure 
amplifiers’s gain and tilt so that their output power matches the one 
provided by the LOGO. Notably, amplifier configurations are set at the 
beginning of the experiment and never reconfigured. Fig. 3(b) shows 
examples of full load output power spectrum captured by an OSA at the 

TAB. 3 OMS per span information and corresponding PLOGO. 

 OMS1 OMS2 OMS3 OMS4 OMS5 

Spans 5x80km SMF  5x100km PSCF 80km LEAF+80km TW 3x80km SMF 

PLOGO (dBm) [2.9, 4.1, 2.2, 1.9, 3.1] [5.1, 4.7, 6.7, 4.4, 6.0] [4.5, 4.6, 6.1, 4.5, 5.4] [0.8, 1.2] [3.1, 4.4, 3.0] 
 

Fig. 4: Experimental testbed with details about service loading by 
ASE source, SNR measurement by transponder, and output power 
monitoring by OPM (OSA is for results analysis). 
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first EDFA on OMS1 when the network is fully loaded. Each subplot 
shows the power spectrum for each power optimization strategy: “set 
and forget” (top), static (middle), and dynamic (bottom), highlighting 
the sharp differences in power allocation across different strategies. 

5. RESULTS 
In this section, first we report results of channel power, gain variation, 

and SNR degradation of the previously established services induced by 
loading new batches of services (Section 5-A and Figs. 5, 6). Second, we 
show the SNR improvement by periodically applying both a static or a 
dynamic power strategy (Section 5-B and Fig 7). Finally, in Section 5-C 

and Fig. 8 , we compare the predicted SNR vs. monitored SNR after the 
power re-optimization with static or dynamic strategy, showing that the 
expected SNRs predicted by our digital twin fit well the reality, 
demontrating the feasibility and reliability of the re-optimization. 

A. SNR degradation by loading new services 

Fig. 5(a) shows the output power spectrum measured at the first 
amplifier on OMS1 after loading different batches of services with the 
“set and forget” operation mode. After loading batch 2/4/6 respectively, 
the number of established channels on OMS1 are 4/24/80 (see 
Fig. 3(a)). We observe that the power of a sample service (with 
wavelength 1569.6 nm) decreases by 1.3 dB after 24 channels are 
established on OMS1 (batch 2 → 4), then, the power of the same service 
decreases by an additional 1.6 dB after all 80 channels are loaded (full 
load) on OMS1 (batch 2 → 6). 

Statistical results of the power variation is shown in Fig. 5(b), which 
depicts the Probability Density Function (PDF) and maximum values of 
channel power decrease of existing channels in batch N induced by 
loading new services in batch N+1. The power is monitored at the 
output of the booster amplifier on each OMS. We observe that the 
maximum power drop induced by loading new batches reaches 3.8 dB 
for N = 4. The booster power variation is caused by both the load-
dependent SRS variation and the gain spectrum variation due to loading 
new services. This shows that the power can drift dramatically with 
different load states in the network, which can cause SNR degradation, 
as described next. 

Fig. 5(c) shows the PDF and maximum values of SNR degradation of 
previously established services in batch N impacted by loading new 
services in batch N+1. We observe that the maximum SNR decrease 
after loading new batches is up to 1.2 dB for N = 2. This SNR decrease of 
previously established services induced by loading new services 
warrants the great importance of applying power re-optimization 
strategy not only of new added services, but also of previously 
established services to avoid large SNR decrease, hence disruption of 
service when loading new services.  

To further study the impact of loading new services, we focus on the 
first-loaded service (“Service #1”). 

In Fig. 6(a), the blue line shows the SNR degradation of Service #1 
after sequentially loading each batch of services when applying “set and 
forget”. Service #1 goes through OMS 1-2-5, crossing 13 heterogeneous 
spans and 16 EDFAs with service length of 1160km. We observe that 
SNR of Service #1 starts to sharply drop by 1.2 dB after loading 3 
batches of 20 services in the network and decreases by up to 3.4 dB after 
loading 7 batches of all 292 services, at which point the network is fully 
loaded.  

To further study the SNR degradation caused by the load-
dependence of EDFA gain profile, we track the variation of channel gain 
(Fig. 6(b)) and channel output power (Fig. 6(c)) with OSA along each 
EDFA that Service #1 crosses as different number of batches of services 
are loaded in the network. In Fig. 6(b), we observe that the channel gains 
of EDFAs crossed by Service #1 generally decrease as new services are 
loaded in the network (as ripples are load-dependent, it is possible that 
the power of some services increase as well). After loading all 292 
services (batch 7), the maximum and average channel gain decrease are 
respectively 1.3 and 1.1 dB among all the crossed EDFAs. The channel 
gain variation induced by the load-dependence of the gain spectrum 
contributes to channel power variation, as shown in Fig. 6(c). In Fig. 6(c), 
we can observe that the channel output power measured at the end of 
transmission of Service #1 decreases by up to 6.6 dB when all 292 
services are loaded in the network, which corresponds to up to 3.4 dB 
SNR drop in Fig. 6(a). We can also observe that the power decrease is 
roughly proportional to the number of crossed amplifiers due to the 
accumulation of gain variation induced by load-dependent gain profile 
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of each EDFA. In Fig. 6(c), we observe 2.9/5.9/6.6 dB power decrease at 
the last EDFA of OMS 1/2/5 after loading all 292 services in the network. 
This could be also observed in Fig. 3(b), where the power spectrum was 
measured at the output of the first EDFA of OMS 1 with “set and forget” 
mode, shows roughly 3 different power levels due to different number 
of EDFAs that services cross before arriving to the first EDFA on OMS 1, 
and the lower channel powers correspond to larger power decreases, 
i.e., to services that cross more EDFAs, hence more OMSes. 

Applying periodic power re-optimization strategy such as static 
strategy (in orange) or dynamic strategy (in green) in Fig. 6(a) mitigates 
the SNR degradation induced by loading new services. In Fig. 6(a), we 
can observe that SNR margin of the Service #1 can always be 

maintained at a high level after loading each batch of services until full 
load is reached. Indeed, for the Service #1, SNR margins are always 
improved of at least 6.5 dB when loading different number of services 
by applying the static strategy, and more than 7dB SNR margins is 
always achieved by the dynamic strategy. In addition, we can observe 
that SNR margins of the Service #1 are always higher with the dynamic 
strategy compared with the static strategy after each batch loading (e.g., 
in Fig. 6(a), green line is always above orange line). This is due to the 
better launch power setting at each OMS by applying dynamic power re-
optimization that is based on more accurate real-time monitoring 
during network life. 

B. SNR improvement by power re-optimization strategies 

Fig. 7(a) shows the SNR margin with static (circle) or dynamic 
(triangle) power re-optimization strategy vs. “set and forget” mode of 
operation after loading new batches of services. The diagonal black line 
shown in Fig. 7(a) corresponds to the situation where the power re-
optimization does not improve/degrade SNR compared to “set and 
forget”. Different colors correspond to different number of loaded 
services (after loading batch 1/4/7). We observe that most of the 
triangles and circles are above the black diagonal line, which means that 
most services’ SNR margins with re-optimization strategies are larger 
than SNR margins with “set and forget” mode. Especially, after loading 
all 292 services in the network, the SNR margin of the service with the 
worst SNR improves by up to 4.6 dB with dynamic strategy. In addition, 
triangular markers are always above circle markers, which shows that 
dynamic strategy further improves SNR margins due to better 
adjustment to the actual monitored network configuration compared to 
the static strategy. 

Fig. 7(b) shows the PDF of SNR margins of all 292 services when 
network is fully loaded for each power re-optimization strategy as well 
as “set and forget”. Small SNR margins are all improved with both static 
and dynamic power re-optimization strategies. If we compare the 
smallest SNR margin among all services with and without power re-
optimization, we observe in Fig. 7(b) that the smallest SNR margin is 
improved by 2.6 dB with the static strategy corresponding to A→C in 
Fig. 7(a) or 3.2 dB with the dynamic strategy corresponding to A→B in 
Fig. 7(a), where the smallest margin with “set and forget” is at point A, 
the margin with the dynamic strategy is at point B, and margin with the 
static strategy is at point C. This confirms that dynamic re-optimization 
strategy further improves SNR margin with respect to the static strategy 
thanks to real-time monitoring of network configuration. 

Next, we study the correlation between SNR gain obtained by power 
re-optimization and the number of crossed OMSes. Fig. 7(c) shows the 
PDF of SNR gain of all existing services in the network after loading each 
batch (5, 10, 20, 40, 80, 160, 292 services are established in the network 
after loading each batch) when applying static (top) or dynamic 
(bottom) power re-optimization strategy compared to “set and forget” 
mode. Different colors correspond to SNR gain of services with different 
number of traversed OMSes. We can observe that after applying 
dynamic power re-optimization, the SNR decreases for a small number 
of services. This is because optimal launch power are not computed 
correctly mainly due to wrong estimation on back-to-back transponder 
penalty, which is highly transponder sample dependent especially for 
large SNR region [16,17]. Thereby, a small number of SNRs 
corresponding to services crossing single OMS are not improved and, in 
fact, it decreases by up to 0.9 dB or 0.8 dB with static and dynamic 
strategies respectively, however their margins remain still high. For 
services that cross 2 OMSes, their SNRs improve by up to 1.9 dB and 
average 0.3 dB with static strategy; up to 2.1 dB and average 0.5 dB with 
dynamic strategy. SNRs of certain services decrease slightly by 0.5dB 
and 0.3 dB with static and dynamic re-optimization respectively due to 
the same reason as described above. Finally, for services that cross 3 
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OMSes, SNRs are improved with both static and dynamic power re-
optimization strategies. Dynamic power re-optimization strategy 
improves better SNRs for services with 3 OMSes compared to static 
power re-optimization strategy. The maximum improvement is 4.4 dB, 
and the average improvement is 1.3 dB by the static strategy, while 
maximum improvement is 4.6 dB, average improvement is 1.5dB by the 
dynamic strategy. Notably, the SNRs of the services that cross 3 OMSes 
are the smallest compared to services with 1 or 2 OMSes, however, 
these SNRs are always improved with dynamic power re-optimization 

strategy with a positive 0.1 dB minimum SNR improvement, average 
1.5 dB SNR improvement, and maximum 4.6 dB improvement.  

C. Predicted SNR vs. monitored SNR with power re-optimization 

Accurate QoT estimation/prediction by the digital twin is of key 
importance for accurate optimal launch power computation, ensuring 
that services can run at their optimum SNRs during network lifetime. In 
this section, we validate the accuracy of our digital twin by comparing 
the SNRs predicted by our digital twin using the optimal launch power 
computed at Step 1 of Fig. 1 vs. the monitored SNRs by the transponder 
after applying power re-optimization strategies, i.e., at Step 3. Since 
SNRs are predicted using the computed optimal launch power, the 
predicted SNRs are ones that we expect to achieve. Notably, only 
information available in real networks (see Tab. 1) is used for both 
launch power computation and SNR prediction. 

In Fig. (8), we compare the predicted SNRs vs. monitored SNRs for 
both static (Fig. 8(a)) and dynamic (Fig. 8(b)) power re-optimization 
strategies after loading each batch of services. The diagonal black line 
shown in Fig. 8 corresponds to the hypothetical situation where SNRs 
monitored by the transponder are ideally predicted by the digital twin. 
As shown in both Figs. 8(a) and (b), SNRs are predicted more accurately 
for services with smaller SNRs which cross two (orange circles) or three 
OMSes (red triangles). All the services with large SNRs cross a single 
OMS (green squares), and they are mainly limited by transponder back-
to-back noise, thereby their SNRs are predicted less accurately; 
however, SNR margins are still high for those services, so lower 
accuracy of prediction is still acceptable. Good prediction on small SNRs 
is more important because services with small SNRs have less margin, 

Fig. 8: Predicted SNR margin vs. measured SNR margin with (a) 
static strategy; (b) dynamic strategy. 
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hence easier to get disrupted due to wrongly predicted launch power 
setting. Inset PDF plots shows the SNR discrepancy between prediction 
and monitoring only for services that cross two and three OMSes 
(orange round points and red triangle points inside dashed blue circle). 
The maximum prediction error is 0.5 dB and the RMSE is 0.2 dB for both 
static and dynamic strategy, which can come from intrinsic QoT 
estimator error and inaccurate parameters estimation i.e., connector 
losses and gain/power spectrai of in-line amplifiers. The result shows 
that the predicted SNRs by our digital twin fits acceptably the monitored 
SNRs after applying power re-optimization strategy. Such accuracy of 
the digital twin during power re-optimization suggests that a feasible 
and reliable power re-optimization strategy can be applied in practice. 

6. CONCLUSIONS 
In this study, we experimentally quantify the impact of establishing 

new services on previously established services on a 5-OMS testbed 
using commercial equipment. We observe that SNRs of previously 
established services are decreased by up to 3.4 dB after loading close to 
300 services in the network. To study SNR degradation due to loading 
new services in the network, we track the output power variation at 
each crossed EDFA of the first loaded service as example after loading 
different number of services in the network, and we find 6.6 dB power 
decrease at the end of transmission after propagating through 16 
EDFAs. Then, we apply 2 different strategies, a static and a dynamic 
strategy, to mitigate the SNR degradation due to loading of new services 
in the network. We find that, using periodic per-service, per-OMS power 
re-optimization strategies, SNR margin is improved by up to 2.6 dB with 
static strategy that needs only “static” parameters that can be obtained 
from design and at commissioning, or 3.2 dB with a dynamic strategy 
that needs not only “static” but also “dynamic” real-time monitoring 
information. Both strategies improve significantly robustness of the 
network thanks to largely improved SNR margin of the worst service. 
Finally, we compare the predicted SNR and monitored SNR with 
applying static or dynamic power re-optimization strategy, and we find 
a good match between predicted and monitored SNR, which shows the 
optimized SNRs can be well predicted. 

One limitation of this work is that we do not consider service 
dropping induced by fiber cuts. If a fiber cut happens, network load will 
change, which means we need to apply power re-optimization again for 
the OMSes traversed by the dropped services, which is time consuming. 
In the future, we may consider predicting power drift after loading new 
services in the network in order to reduce power re-optimization time 
to meet more practical requirements in real networks (e.g., power re-
optimization including in fast re-routing to recover service caused by 
fiber cut with good SNR margin). Moreover, all the issues related to the 
scalability of the proposed strategy as well as the transient of the devices 
are critical aspects which we are planning to assess. 
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