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The estimation of the Quality of Transmission (QoT) in optical systems with machine learning (ML) has
recently been the focus of a large body of research. We discuss the sources of inaccuracy in QoT estimation
in general, we propose a taxonomy for ML-aided QoT estimation, we briefly review ML-aided optical
performance monitoring, a tightly related topic, and we review and compare all recently published ML-
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1. INTRODUCTION

Machine learning has regained popularity in the past few years
as a tool capable of solving typically highly nonlinear classi-
fication or regression problems for which there is no known
analytic solution or when known solving methods, analytic or
heuristic, fail to give an answer in a reasonable time. Machine
learning has already been extensively leveraged in the optical
communication and networking community, with:

® 6 surveys within 3 years [1-6];

¢ 3 workshops or dedicated sessions: at NIST [7, 8] in 2019,
OFC conference in 2020 [9] and APC conference in 2020 [10];

e 2 tutorials [11, 12] at the OFC conference in 2020.

ML-based Quality of Transmission estimation (ML-QoT) has
been the topic of 2 recent conference talks [13, 14] and the ambi-
tion of this paper is to make a complete survey of the literature
body for ML-QoT.

Network designers have long been interested in accurate,
fast QoT estimation for services to be established in a future
or existing network. Accuracy is important as modeling errors
translate into design margins [15, 16], which in turn translate
into wasted capacity [17] or unwanted regeneration [18, 19]. In
the case of network planning (either for a new network or when
planning the establishment of a new service in an operating
network), second-timescale computations are appropriate. In
the case of online provisioning, computations must be much
faster, for instance well below 1 second per service. One example
of online provisioning is restoration.

The main QoT metric of interest to the network designer is
service or light path Bit Error Rate (BER), whose value deter-
mines whether a service is acceptable and “error free” (BER
below a predefined threshold) or not. Today’s transmission sys-
tems use Forward Error Correction (FEC) and the threshold is

usually expressed in terms of pre-FEC BER. The BER of a ser-
vice is in turn tightly related to its signal-to-noise ratio (SNR).
Given a modulation format, there exists a one-to-one mapping
between BER and SNR. In addition, a metric inherited from non-
coherent transmission systems is the Q-factor, which again is
directly mapped to BER (Q = v/2erfc ! (2BER)); in that respect,
(pre-FEC) BER, SNR, and Q-factor are equivalent and refer to a
measure of the end-to-end service performance.

QoT estimation is only one sub-field within optical commu-
nication that has been addressed through machine learning tech-
niques; however, even for a sub-field, the literature is already
very rich. This can be explained by the complexity of the prob-
lem itself; QoT as a whole (BER, SNR, Q) can be estimated
through machine learning, but QoT can also be decomposed
into several terms, each of which can be the topic of machine
learning estimation.

In this paper, we survey and discuss previous research that
attacks the QoT estimation problem for transport networks by
means of any machine learning-based technique. We restrict
the review to coherent transmission networks, as non-coherent
transmission is typically no longer deployed in transport net-
works. We acknowledge that QoT estimation in non-coherent
transmission line has also been addressed with machine learn-
ing, but we leave this topic outside of the scope of this review,
which targets practical, current transport networks. We have
also left out of the scope of this survey papers that leverage ma-
chine learning to make a choice on a component parameter (e.g.,
Erbium Doped Fiber Amplifier (EDFA) setting [20]) or a network
design parameter (e.g., wavelength allocation [20-22]) based on
a QoT related metric (e.g., SNR maximization, minimization of
the penalty of adding a channel on existing signals) as those
papers do not estimate quality of transmission.

Conversely, the problems of optical performance monitoring
(OPM) and QoT estimation are tightly related, as monitoring
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is needed to feed most QoT estimation frameworks. For this
reason, we provide a brief review of machine learning-aided
OPM.

This survey is organized as follows. Acronyms are expanded
in Table 1. In Section 2, we discuss the two key sources of inac-
curacy for QoT estimation: the (physical) model itself, and its
inputs. In Section 3, we review the taxonomy further used in
the article. In Section 4, we review machine learning-aided tech-
niques for optical performance monitoring. The key contribution
of this survey is Section 5, where all machine learning-based QoT
estimation papers are summarized and compared according to
the taxonomy introduced in Section 3; in particular, the crux of
this survey consists of the summary Tables 2-5.

Table 1. Acronyms

ADC Analog to Digital Converter
ANN Artificial Neural Network

ASE Amplified Spontaneous Emission
AUR Area Under the ROC

BER Bit Error Rate

DNN Deep Neural Network

DSpP Digital Signal Processing

EDFA Erbium Doped Fiber Amplifier
FEC Forward Error Correction

GPR Gaussian Process Regression

KNN K Nearest Neighbors

ML Machine Learning

NN Neural Network

OPM Optical Performance Monitoring
OSA Optical Spectrum Analyzer

OSNR Optical Signal-to-Noise Ratio

PDL Polarization Dependent Loss

PDM Polarization Division Multiplexing
QAM Quadrature Amplitude Modulation
QoT Quality of Transmission

QPSK Quadrature Phase-Shift Keying
RMSE Root Mean Square Error

ROADM  Reconfigurable Optical Add-Drop Multiplexer
ROC Receiver Operating Characteristic
SNR Signal-to-Noise Ratio

SSF Split Step Fourier

SVM Support Vector Machine

WDM Wavelength Division Multiplexing
WSS Wavelength Selective Switch

2. SOURCES OF INACCURACY IN QOT ESTIMATION

Before we discuss why QoT estimation generally remains inac-
curate, we need to delve into the main sources of impairments
that are accounted for in a QoT metric such as SNR.

SNR can be split into several terms, corresponding to dif-
ferent noise sources. In general, we can write SN Rl =
Yk SNRk_l where SNR is the SNR of a service and SNR; is
the contribution of the physical effect indexed by k, for instance:

e linear Amplified Spontaneous Emission (ASE) noise in-
jected by optical amplifiers (in which case the contribution
is called OSNR, optical signal-to-noise ratio),

¢ nonlinear noise caused by the fiber Kerr effects,

e filtering penalties due to filters being narrower than the
signal’s bandwidth (and, conversely, node crosstalk, orig-
inating from imperfectly filtered signals from adjacent or
other ports),

¢ transponder back-to-back penalty,

* polarization dependent losses (PDL).

The first three aforementioned effects have been modeled
with machine learning and are discussed further in this article.
The second to last effect is difficult to estimate through machine
learning as it depends on each pair of transceivers and is usually
measured. The last effect (PDL) depends on sources that are
external, independent from the telecommunication infrastruc-
ture; indeed, fiber birefringence can be changed for instance by
mechanical stress on a fiber, resulting in varying polarization
state at the input of further components (amplifiers, filters, etc.).
If those components exhibit PDL, then the random input polar-
ization state in turn induces a random loss. Since PDL sources
are inherently impossible to monitor, and thus cannot be used
as features in a machine learning framework, PDL is difficult
to model through machine learning, and static (e.g., worst-case)
margins are often used.

A. Trade-off accuracy/speed

Many physical, non-machine learning based models for QoT
estimation exist; accurate models exist for each effect, but the
speed bottleneck is the modeling of nonlinear effects, for which
methods range from the Split Step Fourier method to analytic
models; the SSF method is very accurate and versatile as it can
address complex scenarios including the mix of non-coherent
and coherent signals in networks with dispersion management;
however the trade-off is with speed, as SSF is very slow — min-
utes or more per service.

The (coherent) Gaussian Noise model [23] is much faster
and is accurate only within its application domain, which does
not include for instance lines with dispersion management; an
approximation of the coherent Gaussian Noise model is the
incoherent Gaussian Noise model [23], which is faster but less
accurate than the coherent version; other variations exist [24, 25].
Experimental validations of the Gaussian Noise model can be
found in [26-28].

QoT estimation through physical modeling is still a very
active field, with a goal to always capture more effects appli-
cable to more diverse scenarios, such as modeling Stimulated
Raman Scattering, which can no longer be neglected in C+L
systems [29].
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Of course, a very accurate QoT model (based on physics or « Fiber type,
machine learning) is not useful when its inputs or parameters dispefsion
are not known accurately — “garbage in, garbage out:” how compensation > Power(h)
can we model QoT when the type of fiber may not even be - e Span loss(A)
known? [30] Hence, a source of inaccuracy in QoT estimation is 2 . Filter
that of the inputs themselves. As mentioned above, SNR can be 5 resi R
decomposed into several terms (OSNR, nonlinear penalty, etc.), (e}
whose inputs may be subject to uncertainty. In Fig. 1, we review 5 R
sources of parameter or input uncertainty with their respective 8 * EDFANF(A)

g- e Span length

Linear noise is typically the main impairment in optical net- * Transponder back-to-

works and is driven by per-channel power at the input of each § back penalty
span, which is not monitored due to a lack of optical spectrum
analyzers in amplifiers in current networks. Input powers are
in turn tightly related to per-channel EDFA gain, which is dif- None Low High
ficult to model and is not monitored, as will be discussed in Uncertainty

Section 3-A. Span losses include both the attenuation of the fiber
itself and lumped losses such as splices (which are more numer-
ous in older fibers) or connector losses. Uncertainty for span
losses lead to improper amplifier setting and increased linear
noise. Span losses can be measured in an operating network but
are difficult to know when designing a network, and they can
change with time. Wavelength dependence of the span losses is
incurred due to Stimulated Raman Scattering. Noise figures are
usually known, although with limited accuracy or without any
gain or wavelength dependence. Note that per-channel power
also affects nonlinear-effects modeling.

Fiber type and presence or not of dispersion compensa-
tion/management strongly affects both nonlinear and linear
impairments, and are usually (but not always) well known.
Span losses (through the span input power) and fiber length
both affect nonlinear effect modeling.

Filter responses within Wavelength Selective Switches (WSS)
and transponder back-to-back penalties can be known from
calibration data sheets, but may vary slightly from component to
component and due to aging; services whose baudrate are close
to the filter width will be more impacted by filter degradation.

Finally, the typical PDL of a component is usually given in
data sheets.

C. Discussion

Please observe that Fig. 1 is as generic as possible, and strongly
depends on the exact network/scenario under consideration:
information about the infrastructure (e.g., fiber type) may be
lost over time, or mis-typed in the network management tool; or
not available at all by design in the case of disaggregation/alien
wavelengths; similarly, calibration data for filters or transpon-
ders may or may not be available at all, depending for instance
on when the network was built, the equipment vendor, and the
operator.

Overall, the three bottlenecks for QoT estimation with tradi-
tional (physical) models are currently:

e the lack of accurate physical models for some of the compo-
nents, in particular, amplifiers;

e the speed of the models for some of the impairments;

¢ the dependence on uncertain parameters or inputs.

Machine learning can mitigate each of these bottlenecks.
Components that are difficult to model can be “learned;” physi-
cal effects that are complex/time-consuming to model can also

Fig. 1. Inaccuracy of typical QoT inputs.

be learned. Indeed many of the machine learning techniques
have low computational complexity when performing the esti-
mation itself as the computational complexity is actually moved
to the training phase, which is usually done offline. Uncertain
inputs that cannot be directly monitored could be inferred by
machine learning.

In addition, machine learning can also be applied to learn
trends for physical phenomena (prediction) [31], which can be
leveraged as well to predict the evolution of the parameters or
inputs of the models (traditional or machine learning-based),
and hence improve the accuracy of the outputs of the models.
However, when those variations are caused by external sources
independent from the physics of the considered system, as is the
case with PDL, machine learning will likely be less useful.

3. TAXONOMY

This section introduces key notions used to classify and assess
the methods proposed in the literature.

A. QoT models: classification, regression

Machine learning models for QoT can be split into two cate-
gories: classification and regression. Classification-based for-
mulation typically solves the following problem: considering a
service (typically to be established, or even already established
if the establishment of a new service is expected to impact other
services, in case of a low-margin scenario), will (is) its QoT be
acceptable (BER below FEC limit) or not? In this case, QoT is
modeled as a binary classifier. Classifiers are sufficient when
the only information relevant to the network designer is the
possibility to establish a service or not; however, more often, the
network designer would like to know the exact value of the QoT,
for instance to assess the robustness of the service to unplanned
impairments (how far is the service from the threshold?), or to
determine a capacity upgrade of the service (e.g., move it from
100 Gb/s PDM-QPSK (Quadrature Phase-Shift Keying) to 200
Gb/s PDM-16QAM (Quadrature Amplitude Modulation)). In
this case, regression techniques are used. More rarely, classifiers
with more than two classes have been proposed, each class cor-
responding to a QoT range, which can then be used to coarsely
(depending on the number/granularity of the classes) assess the
robustness or upgradability of a service.
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B. Evaluation metrics

Depending on whether the QoT model is based on classification
or regression, different metrics are used to evaluate the quality,
or accuracy, of the model. Given a confusion matrix, where rows
correspond to the predicted class, columns to the actual class,
and cells to the number of instances from an actual class and
predicted to be within a given class, the accuracy of a classifier is
defined as the ratio between the number of correctly predicted
instances with the total number of predicted instances, i.e., the
proportion of true positives and negatives to the total estimated
population size. Such a metric is known to fail when the number
of samples in the two categories is greatly imbalanced; for in-
stance, using this definition of accuracy, given a population with
99% of samples with class “1” and 1% of samples with class ‘0’
then a trivial classifier that deterministically assigns class ‘1’ to
any sample will have an accuracy of 99%. For this reason, other
metrics are also proposed, in particular, the area under the ROC
curve (AUR), where the ROC (receiver operating characteristic)
curve is the true positive vs. false positive rate curve parameter-
ized by the decision threshold of the classifier. An AUR closer to
1 indicates a better classifier. A detailed discussion on this mat-
ter can be found in [32]. For simplicity, in the remainder of this
paper, we will use wording “accuracy” for classifiers without
further specifying the underlying metric.

Similarly, several metrics can be used to assess the accuracy
of regression-based estimators. Typically, metrics are based on
the distribution of the error, i.e., the difference between the es-
timated QoT #; and the ground truth y; for the service indexed
by i. The average error < |y —y| > (where < - > denotes
the mean of a vector) indicates on average how the estimator
performs, but cannot be used to determine the margin to be
taken to guarantee, with a certain probability, that the system
will behave as expected, e.g., that the service will be error-free.
The maximum error max; |ify — yx| would give such a margin
with very high probability, while the cumulative distribution
function of (§ — y) can be used to obtain intermediate proba-
bilities. Another popular metric, used more often in estima-
tion frameworks due to its analytic properties, is the root mean

square error (RMSE): 1/ < (§ — y)2 >. Similarly, another popu-
lar metric is the R? parameter, which denotes the proportion of
the variance of the data that can be explained by a model, i.e.,
R =1-Y(y; — 9%/ L (yi— <y >)?% an R? parameter close
to 1 indicates a better fit by a model.

C. Use cases: components, transmission lines, networks

To tackle the problem of estimating QoT for services network-
wide, a divide-and-conquer approach can be used, by decom-
posing the network into transmission lines (the set of elements
between two nodes or ROADMSs), each of which could be mod-
eled with machine learning techniques. Transmission lines can
in turn be decomposed into a series of devices, e.g., amplifiers,
fibers, WSS’s /filters, each of which could be modeled with ma-
chine learning techniques. Assuming models exist for each
device, it is nevertheless not guaranteed that their cascade is
accurately modeled; indeed, small inaccuracies in the behavior
of a component accumulate, leading to potentially large end-
to-end inaccuracies. This is why network-wide or line-level
methods are investigated in addition to the modeling of individ-
ual devices. Here we adopt the following criterion to distinguish
between line and network studies. Whenever the proposed
method uses network-wide data, i.e., the data used to train the
model comes from anywhere in the network and not only from

the line crossed by a considered service, we classify the paper
in the “network” category. In cases where individual lines are
considered and trained on synthetic data due to practical rea-
sons, since a realistic scenario would require using training data
from already established light paths to model the line, we also
classify the paper as a “network” paper. If each transmission
line is considered independently one from another with no input
coming from any other line, the paper is classified as a “line”

paper.

D. Data source: greenfield vs. brownfield

Machine learning intrinsically relies on a training step, where
data is gathered to train or calibrate a model. For instance, data
can be:

¢ generated using a modeling tool known to be accurate but
having some other drawback such as speed, for example
the SSF method or the Gaussian Noise model [23];

¢ collected in the lab on the equipment prior to deployment
or on equivalent equipment;

¢ collected directly in the field before/during commissioning,
or even during network operation (online).

Data collection may be difficult, time-consuming or costly, and
it is generally desirable to reduce the amount of training. In
particular, when a model for some system (device, line, network)
has been trained for a specific set of parameters (e.g., a modula-
tion format), it is expected that adjusting the model for another
yet similar parameter value (e.g., another modulation format)
can be done without having to fully re-train the model. Some
of the papers described here leverage transfer learning, which
aims at minimizing the amount of new data needed to re-train
a machine learning model while achieving the same accuracy
when changing the value of a key parameter of the considered
system.

As machine learning relies on a training step, which in turn
relies on data collection, most of the machine learning techniques
described in this survey apply to “brownfield” line/networks
which have already been deployed and are running, such that it
is possible to collect data directly from the field to train models.
The typical scenario is capacity upgrade, where the operator
needs to verify that QoT of a new service to be established is
acceptable, or where the operator would like to determine the
maximum capacity the service can carry given its estimated QoT.
Additionally, the operator may want to verify that the intro-
duction or restoration of the new service does not negatively
impact the services already established, in case the network was
designed with low margin [16]. It is possible to go beyond re-
lying on data from existing services, and to actively probe the
network to generate more data (“active learning”). However,
some of the presented techniques also apply to lines/networks
yet to be physically deployed, where field data is not available
- the “greenfield” scenario. A typical scenario is the estima-
tion of the QoT of all services to be established right after the
line/network is deployed. An intermediate scenario is when
models are trained using a limited amount of data collected
right after a line/network is deployed, for calibration; networks
cannot be designed using the model as training data is not yet
available, however resource (power, capacity, routing, spectrum,
etc.) allocation can still be computed before the network goes
live. We consider this scenario as greenfield in this survey.
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Fig. 2. Machine learning approaches for QoT estimation.

When a model has already been trained on a (“source”) line
or network, it is possible to adjust the model on a different (“tar-
get”) line or network with only a small amount of data acquired
on the target line/network, using a technique called transfer
learning. In case transfer learning is used at the line level, the
source and target lines may be in the same network — a brown-
field scenario. In the other cases, i.e., the target is a line in a new
network, or the source and targets are complete networks, then
transfer learning applies to the greenfield case, with a caveat: as
transfer learning relies on training on the target (line or network),
a limited but nonzero amount of data collection is needed on
the target, corresponding to the intermediate greenfield scenario
mentioned above.

E. Learning Type: Data scientist, Physicist, Hybrid

We introduce in this survey a novel type of classification for
machine-learning based algorithms applied to QoT estimation.
Consider a physical model f (for instance, the computation
of OSNR after a fiber span and an amplifier) parameterized
by 6 (for instance the noise figure and gain of the amplifier or
the linear loss parameter of the fiber, known only from data
sheets) to estimate y (for instance, said OSNR) based on inputs
or features x (for instance, the launch power of a channel in the
fiber): y = fp(x).

The traditional approach, which we call “data scientist”
(Fig. 2a), models a system as a black box fy = fgd that hasno a
priori knowledge of the underlying physics of the system. This
does not mean that a data scientist handling the QoT modeling
problem should not understand the physics of the system to
model; for instance, physical skills/insight will play a role when
selecting /formatting /normalizing the features, etc. The black
box (e.g., a neural network) is parameterized (e.g., # implements
the neural weights) and the training step consists of setting 6
such that the resulting data model approximates well the under-
lying physical model. Most papers summarized in this survey
use this approach.

In the second approach, which we call “physicist” (Fig. 2b),
it is assumed that a physical model fy = fgj already exists for
the model of interest, but that the parameters 0 (for instance, the
fiber length or linear attenuation) of the system are not known
accurately. The “physicist” approach assumes that f(f is correct
but that QoT estimation inaccuracies stem from 6. The goal of
the training step is then to refine or calibrate 6 so as to make fep
more accurate when presented with a new input (for instance, a
new launch power).

In the third approach, which we call “hybrid” (Fig. 2c), the
system of interest is again modeled as a black box fy = fg as
in the data scientist approach above (for instance, fg is a neural
network), and the traditional inputs are supplemented with the
output of the physical model corresponding to the system f7
(for instance, the analytic OSNR calculation for a fiber span);

this biases the data scientist model towards the behavior of
the physical model, while physical modeling deficiencies are
addressed through training on the real system.

As a further illustrative example, [33] compares the first and
third approaches with an analytic method (f? is the GN model)
in the same paper for SNR estimation; the data scientist method
is exemplified by a neural network (f?) trained on observed
network states, while the hybrid method additionally feeds said
artificial network with the output of the analytic model. All
techniques are evaluated in the context of noisy model param-
eters (in this case, the noisy parameters are the fiber lengths):
the analytic model is as accurate as its parameters (i.e., it is very
accurate for non-noisy parameters but very inaccurate for noisy
parameters), while the plain neural network, being trained on
noisy parameters, outperforms the analytic model when parame-
ters are noisy. As the hybrid method leverages a neural network
trained on noisy parameters, it performs well in a noisy situ-
ation; being also trained for the non-noisy situation through
the output of the GN model, the hybrid method also performs
well in the non-noisy situation. In contrast, a physicist method
would first learn (de-noise) the parameters and feed those into
an analytic QoT model such as the GN model.

4. ML-OPM: MACHINE LEARNING-BASED OPTICAL
PERFORMANCE MONITORING

ML-based OPM, or ML-OPM for short, consists in estimating a
single component such as linear or nonlinear noise, or separat-
ing a compound QoT-related metric into separate components,
such as the linear and nonlinear noise contributions from the
received samples at a coherent receiver. ML-OPM has received
a lot of attention and surveys can be found in [1, 3, 6]. ML-OPM
essentially behaves as a software OPM and voids the require-
ment for dedicated hardware, although some of the proposed
techniques rely on analysis of samples already available just
after the analog to digital converters (ADC) or further down in
the coherent receiver digital signal processing (DSP) chain: such
processing clearly requires modifications on the coherent DSP
chip, which may entail additional development cost and energy
consumption.

ML-OPM permits one to gain more insight on the impair-
ments sustained by signals already present in a communication
system, and as such can be leveraged for ML-QoT; however,
ML-OPM in itself is not a QoT estimation tool. For this reason,
an exhaustive survey of ML-OPM is left out of the scope of this
paper. However, because ML-OPM and ML-QoT are strongly re-
lated, we give a very brief overview of ML-OPM here, as related
work.

As early as 2010, [34] proposed a neural network to estimate
the OSNR, chromatic dispersion, and polarization-mode disper-
sion of an established service. The neural network was trained
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with parameters derived from asynchronous constellation dia-
grams. Since the monitoring information lies in the transitions
rather than in the detection samples, the technique does not
require sampling at the signal symbol rate and a photodiode
with low-speed ADC and slow DSP are sufficient. The technique
was applied for QPSK signals with no polarization diversity. A
similar technique was presented in [35] for 16QAM signals with
no polarization diversity.

OSNR monitoring was also the topic of [36-39], which all
process receiver post-ADC samples with neural networks to es-
timate OSNR. Chromatic dispersion is additionally monitored
in [40], also using the post-ADC samples, using a long short-
term memory neural network. The requirement for processing
at the coherent receiver was relaxed in [41], where a neural net-
work is fed by samples from a single photodiode followed by
a fast but asynchronous ADC, thereby enabling OSNR moni-
toring at any point on a line, at the expense of deploying extra
hardware. This framework is extended in [42], where transfer
learning is used to decrease the amount of retraining of a neural
network trained for a modulation format (e.g., PDM-16QAM)
but used for another modulation format (e.g., PDM-64QAM).
The separation of linear and nonlinear noise was tackled in [43],
which performs constellation analysis using a neural network
— leading to an implementation in a commercial coherent mo-
dem in [44]; such separation was also addressed in [45], which
estimates using a neural network the ratio between linear and
nonlinear noises from the received spectrum obtained from the
received samples or through a high resolution optical spectrum
analyzer.

5. ML-QOT: MACHINE LEARNING-BASED QUALITY OF
TRANSMISSION ESTIMATION

The summary of the key features according to the taxonomy pre-
sented in Section 3 and of the outcomes of the papers surveyed
in the article can be found in Tables 2-5, each table correspond-
ing to one of the subsections below: amplifiers modeling, line
modeling with regression, network modeling with classification,
network modeling with regression. Following the discussion
in Section 3-D, for the transfer learning-related techniques we
left empty the “data source” column. In the tables, we also indi-
cate whether results were obtained experimentally or through
simulation in the “Type of study” column. We also list the fea-
tures needed to estimate the QoT metric in the “Inputs” column.
All algorithms are supervised and rely on training data, which
can be obtained through monitoring on a live network, emula-
tion/calibration (e.g., from lab experiments) or simulation (e.g.,
using a physical model).

A. Amplifiers modeling

The first set of papers (Table 2) aim at modeling the behavior of
amplifiers — a single EDFA ([46—49]) , the combination of Raman
amplification with an EDFA [50], and a single Raman amplifier
(along with a 100 km fiber span) over the C+L bands [51].
Modeling of amplifiers is key as most systems are OSNR-
limited, i.e., the main impairment is the ASE noise originat-
ing from amplification. The amount (power variance) of noise
generated by an amplifier is deceptively simple and given by
Pasg = hf (GF — 1)B where h is Planck’s constant, f is the cen-
tral frequency of the signal, B is the bandwidth in which the
noise is considered, G is the amplifier gain and F is its noise fig-
ure. However, in reality EDFA gains are wavelength dependent;
to make things more complicated, the wavelength dependence

(the shape of the gain) nonlinearly depends on the input power
spectrum of the EDFA, i.e., on which input channels are lit, and
on the power of each of the input channels, due for instance
to spectral hole burning, an effect that is difficult to model and
affects amplifier gain at the short wavelengths in the C band [52].
This makes EDFAs good candidates for machine learning mod-
eling. Similarly, Raman amplifiers are modeled using a set of
ordinary differential equations [53] and are also good candidates
for machine learning modeling.

The premises of all aforementioned papers in this section are
essentially the same: given the input power spectrum of an am-
plifier, estimate the gain per channel or equivalently the output
power spectrum using a neural network trained for instance in
the lab, prior to deployment.

With the exception of [49], which uses the “hybrid” approach,
all amplifier modeling papers use the “data scientist” approach.
In [49] a neural network is fed with the outputs of an EDFA
analytic model in addition to the standard modeling inputs;
although the technique ultimately does not improve modeling
accuracy, it improves the training time and reduces the amount
of training samples.

Each study was done for a single amplifier, with a single
setting, such as the amplifier gain or total input power, with
the notable exception of [50], which additionally outputs the
amplifier’s settings to achieve a given response; as related work,
the problem of finding amplifiers’ settings to achieve a target
gain shape is put in the broader context of inverse system design
in [54], whereby a machine learning framework is used to learn
what parameters yield a desired output for some system, such
as an optical amplifier. Solving the problem for a single setting
implies that training may have to be done for each amplifier’s
settings. The reported results, an error (RMSE or maximum)
typically below 0.2 dB, should be considered in light of the
application of the estimation framework. In a line with 10 or 20
such amplifiers, errors may accumulate to several dB in optical
spectrum and then in SNR.

B. Line modeling: regression

We now consider the modeling of an individual optical point-to-
point line (Table 3) [55-59]. All papers rely on neural networks
except [55], which leverages Gaussian Process Regression (GPR).
All follow a “data scientist” approach.

In [55, 57], the greenfield scenario is considered; [55] shows
that training the GPR model on synthetic data enables accurate
BER estimation in deployed systems, while [57] assumes that a
line model is trained prior to deployment or at commissioning
time based on measurements on the real line. Both [56, 57] model
linear effects only ([56] in the very special case of a submarine
link subject to strict power supply constraints) for two differ-
ent reasons: in [56], operation far from the nonlinear regime is
assumed, while in [57], it is assumed that nonlinear effects can
be accurately modeled e.g., using the Gaussian Noise model —
experiments are accordingly carried out on a cascade of ampli-
fiers without any fibers, whose losses are emulated with variable
optical amplifiers — and that most uncertainty on QoT model-
ing comes from the lack of an accurate model for the amplifiers,
as discussed in Section 5-A. In all cases, estimation error of a
fraction of a dB is reported.

Papers [58, 59] further propose transfer learning techniques
to adjust a neural network trained on one line to another line
with little amount of retraining, to estimate OSNR [58] or Q [59].
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C. Network modeling: classification

In the following set of papers (Table 4), a classification frame-
work is adopted, generally to estimate whether a service has an
acceptable QoT or not [32, 60-65], and, in the case of [66], to give
a coarse estimate of the value of the OSNR (as only ASE noise is
modeled) through binning using a four-class classifier. For the
sake of completeness, [61] is applied to multicast services and
is generalized to multicore networks in [67], and to multi-slice
networks with distributed controllers in [68], while [69] further
leverages the work from [32] for improved resource allocation.

Typical classification accuracy is 90% and reaches 99% in
several of the papers. A problem with classification is the lack
of training data for the “unacceptable BER” class, as operators
typically do not try to establish services they anticipate will
fail, or at least target a very small blocking rate. This biases
the classifier and is usually solved by generating data (services)
with unacceptable BER by simulation. Such data generation
is not practical in live networks, where forcing collection of
samples in that class could instead be done through probing
including establishing services with poor BER as in [32, 62].
In the case of probing, it should be ensured that sending new
signals in a functioning network does not disturb the operation
of the network; also additional equipment would be needed
to probe the network as transponders are valuable resources,
which are typically not left idle by operators except in the case
of protection.

In [65], the amount of training data for the binary classifier
proposed in [32] is reduced through transfer learning when the
classifier is applied to a new line or network; similar accuracy
can be obtained on the target without full retraining of the ma-
chine learning model. In [70] the transfer learning technique
is compared with the probing-based active learning technique
already mentioned above [62] in terms of samples to collect; com-
pared with transfer learning, active learning requires fewer, but
targeted samples that may be more difficult or costly to collect.

A large variety of machine learning techniques, all of the
“data scientist” type, were proposed to tackle the classification
problem: Support Vector Machines (SVM), K Nearest Neigh-
bors (KNN), random forest, GPR, logistic regression, and neural
networks, typically used for regression but here used for clas-
sification. All papers rely exclusively on simulations, based on
synthetic data sets generated through one of the QoT analytic
models introduced in Section 2-A, such as the GN model.

It should be noted here the remarkably small amount of re-
quired features needed to achieve high classification accuracy;
in particular, none of the features needed to model nonlinear
effects is present in some of the papers, for instance: per-channel
or at least total input span power; length of each span: as non-
linear effects occur at the beginning of the spans, if all spans
are sufficiently long, then nonlinear effects are similar for all
spans and the exact lengths are not needed, but a high diver-
sity in span lengths would yield a high diversity in nonlinear
impairments; also span lengths drive amplification noise; this
suggests that OSNR-limited scenarios are considered, or that
even higher classification accuracy could be achieved with addi-
tional features. Note that this discussion can be generalized to
the regression papers, which do not all use the features that are
needed to physically model nonlinear effects.

D. Network modeling: regression

In the last set of papers (Table 5; see also Table 4 for [64])
[19, 64, 71-83], network-wide information is leveraged to train

and estimate the QoT of a service in the brownfield /upgrade sce-
nario with one exception: [81] also applies to greenfield. Those
techniques are highly diverse: 8 papers use a data scientist ap-
proach, 5 a physicist approach, and 3 a hybrid approach, us-
ing such diverse techniques as neural networks, optimization
through filtering, gradient descent, least squares or SVM regres-
sion; 10 papers report simulations and 5 experiments.

The physicist approach is used in [19, 72, 74, 79, 80] to learn
the parameters of a physical model or to refine them in case
those inputs are not accurately known; in particular, [80] focuses
on learning EDFA gain ripple penalties from end-to-end mea-
surements (as mentioned in Section 5-A, such technique can be
cast in the more general framework of inverse system design),
while [79] additionally learns filtering penalties. The other 3
papers [19, 72, 74] deal with end-to-end QoT as a whole. Note
that [74] also uses the data scientist approach. The problem of
handling parameter uncertainty is also tackled in [81] using the
hybrid method, but without trying to refine the parameters.

The hybrid approach is used in [75, 76, 81], where artificial
neural networks are fed both with network and signal-related
features as in other works but also with the output of a mod-
eling tool (e.g., the Gaussian Noise model) optionally comple-
mented with monitoring data. Paper [75] additionally considers
networks with mixed types of fibers, while [81] leverages in-
formation gained from a network to apply to another network,
without relying on transfer learning.

The range of applicability of the proposed technique is
strongly impacted by the type of study (simulation or experi-
mental) and varies accordingly widely depending on the papers;
as a representative example, in [64], a simulation paper, results
are reported for four network topologies with high topological
diversity (nodes, links, node degree, link lengths, fiber type), for
SNR margin values spanning 40 dB; on the other extreme, [78] is
based on a field trial over a single transmission line where most
characteristics are fixed, such that the prediction range is limited
to the interval [16, 16.6] dB.

6. CONCLUSION

QoT estimation is just one of many optical networking fields
that have recently been tackled through machine learning. In
only four years, dozens of articles were published on the spe-
cific topic of machine learning-aided QoT estimation. This field
is actually very rich, as exemplified by the variety of the tech-
niques/machine learning tools that are used and the targeted
application, from individual components modeling to full net-
work modeling, from the modeling of a single physical effect
to the modeling of the end-to-end BER, from networks still at
the design stage (greenfield) to networks already deployed and
waiting for an upgrade (brownfield).

Machine learning proves to be useful when traditional mod-
eling is difficult or slow, which is the case for some of the key op-
tical networking components such as optical amplifiers, but also
full lines (which cascade said components) and consequently
whole networks. Machine learning can replace physical models
through a black box approach, but also complement existing
physical models through refinement of the model parameters.
The results reported in the literature in terms of accuracy and
even speed are very encouraging. Of course, as in any machine
learning related research, the quality of the underlying data is
essential.

In particular, machine learning relies on training, which is of-
ten specific to components or lines; solutions include training in
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the lab (at the expense of the real, field experience and possibly
accuracy), online (which limits the use case to “brownfield” or
capacity upgrade, but is likely more accurate through reliance
on actual, monitored data) or through retraining a model already
trained in the lab as with transfer learning techniques. Therefore,
researchers have to find the right trade-off between synthetic
data generation, where machine learning may simply end up
learning the algorithm used to generate the data, and experi-
mental studies, which are limited in scope due to the difficulty
and cost of emulating a wide range of scenarios.
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Table 2. Comparison of machine learning-based Quality of Transmission estimation frameworks for amplifiers

Paper | Use case | Data Learning Algorithm Type Inputs (features) Output Key results
source type of
study
[46] Single Green, Data scien- | DNN Exp. Per channel input power Optical RMSE < 0.2 dB
EDFA brown tist power
spectrum
[47] Single Green, Data scien- | DNN Exp. Per channel input power Gain 0.18 dB max. gain estima-
EDFA brown tist tion error
[48] Single Green, Data scien- | ANN Sim. Per channel input status (on/ off) Optical Error < 0.2 dB in 90% of the
EDFA brown tist power cases
spectrum
[49] Single Green, Hybrid DNN Exp. Per channel input power; per channel output | Optical RMSE < 0.2 dB; faster con-
EDFA brown power from analytic model power vergence with inputs from
spectrum analytic model
[50] Single Green, Data scien- | DNN Exp. Amplifiers’ pump powers (which adjust gain and | Optical Typical error in output
Raman brown tist tilt) power power < 0.2 dB (max.: 0.3
/ EDFA spectrum dB)
link
[51] Single Green, Data scien- | ANN Sim. Per subband input power, pump powers Gain and | Max error < 0.5 dB on gain
Raman brown tist ASE noise | and noise power
link prediction
Table 3. Comparison of machine learning-based Quality of Transmission estimation frameworks for lines: regression
Paper | Use case | Data Learning Algorithm Type Inputs (features) Output Key results
source type of
study
[55] Line Green, Data scien- | GPR Sim. / | TX power, number of spans, baudrate, interchan- | BER / Q Qerror < 0.3
brown tist Exp. nel spacing
[56] Line Brown Data scien- | DNN Exp. Per-channel received signal and noise OSNR 0.5 dB max. OSNR error
tist
[57] Line Green, Data scien- | ANN Exp. End of line spectrum OSNR Error on OSNR < 0.2 dB
brown tist
[58] Line Data scien- | DNN, trans- | Exp. Amplitude histogram of received samples OSNR Retraining test size divided
tist fer learning by 5, training time divided
by 10
[59] Line Data scien- | DNN, trans- | Exp. Q from other lines and new line Q Retraining test size divided
tist fer learning by 50, training time divided

by 4
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Table 4. Comparison of machine learning-based Quality of Transmission estimation frameworks for networks: classification

Paper | Use case | Data Learning Algorithm Type Inputs (features) Output Key results
source type of
study
[60] Network | Brown Data scien- | SVM Sim. Light path length, link lengths, wavelength, statis- | BER (2 | >99.9% correct decisions
tist tics on co-propagating light paths classes)
[61] Network | Brown Data scien- | ANN Sim. Path length, number of EDFAs, max. link length, | BER (2 | Accuracy > 90%
tist destination node degree, wavelength classes)
[32] Network | Brown Data scien- | KNN, Ran- | Sim. Total length, number of links, maximum link | BER (2 | Typical accuracy > 95%
tist dom Forest length, demand capacity, modulation format, | classes)
guardband, modulation format, and traffic vol-
ume of nearest left and right neighbor
[62] Network | Brown Data scien- | GPR, active | Sim. Total length, number of links, maximum link | BER (2 | Accuracy > 99% by comple-
tist learning length, demand capacity, modulation format classes) menting a small data set of
existing services with only a
few well-chosen light paths
used as probes
[63] Network | Brown Data scien- | SVM, ANN Sim. Total link length, span length, channel launch | SNR 2 | > 99% correct decisions
tist power, modulation format, data rate classes) with ANN and SVM, ANN
10x faster (sub-ms)
[64] Network | Brown Data scien- | KNN, lo- | Sim. Number of hops and spans, light path length, av- | SNR (con- | Typical classification accu-
tist gistic re- erage and maximum link length, average span | tinuous or | racy > 95%, average SNR
gression, attenuation, average dispersion, modulation for- | 2 classes) error < 0.4 dB
SVM  (clas- mat
sification),
ANN (clas-
sification,
regression)
[66] Network | Brown Data scien- | SVM Sim. Number of ROADMs, of links, of fiber spans, | OSNR (4 | > 95% correct decisions
tist Length of fiber span, launch channel power, EDFA | classes)
Pre- and EDFA Post-amplifier gain, wavelength
[65] Network Data scien- | SVM, trans- | Sim. Total length, number of links, maximum link | BER (2 | Retraining test size divided
tist fer learning length, demand capacity, modulation format classes) by 20
Table 5. Comparison of machine learning-based Quality of Transmission estimation frameworks for networks: regression
Paper | Use case | Data Learning Algorithm Type Inputs (features) Output Key results
source type of
study
[71] Network | Brown Data scien- | ANN Exp. Not explicit OSNR Microsecond estimation,
tist RMSE < 0.2dB in 90% of
cases
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[19] Network | Brown Physicist Filtering Exp. Pre-FEC BER Q 0.6 dB max. estimation er-
ror on Q, millisecond esti-
mation

[72] Network | Brown Physicist Gradient de- | Sim. Pre-FEC BER, fiber input power, NF SNR Typical error < 0.1 dB

scent

[73] Network | Brown Data scien- | DNN Exp. Channel, noise power on each link OSNR < 5 dB OSNR error over

tist range 20-40 dB

[74] Network | Brown Physicist; Least Sim. Per span: fiber attenuation, dispersion, nonlin- | SNR SNR RMSE down to < 0.1

data scientist | squares ear coefficient (physicist); Number of EDFAs and dB
hops, total path length, baud rate, “load metric”
(data scientist)
[75] Network | Brown Hybrid ANN Sim. Gaussian Noise model output, span number, max- | Nonlinear | Error <2 dB in 95% of the
imum and average lengths, launch power, link | SNR cases
length, residual chromatic dispersion, average
fiber nonlinear coefficient and attenuation, num-
ber of channels
[76] Network | Brown Hybrid ANN Sim. Fiber attenuation, dispersion coefficient, effective | Nonlinear | > 99.9% estimates within
area, and non-linear refractive index; span length, | SNR 0.5 dB, < 10 ms computa-
number of active channels, launch power, chan- tion
nel bandwidth and frequency, output of analytic
modeling tool
[77] Network | Brown Data scien- | ANN Sim. List of span lengths SNR RMSE < 0.2 dB
tist

[78] Network | Brown Data scien- | DNN Exp. Launch power, laser bias, EDFAs input/output | Q RMSE < 0.02dB with 600

tist powers training points

[79] Network | Brown Physicist SVM regres- | Sim. Power per channel at each node, fine (sub-GHz) | SNR Typical error <0.2 dB

sion optical spectrum every few spans, pre-FEC BER

[80] Network | Brown Physicist Gradient de- | Sim. Pre-FEC BER, spectrum at gain equalizer SNR Typical error <0.1 dB

scent

[81] Network | Both Hybrid ANN Sim. Per channel power and frequency; number of | SNR Max. error < 0.5 dB

spans; from physical model: ASE and nonlinear
noises
[82] Network Data scien- | DNN, evo- | Exp. OSA power profile at each WSS Q Retraining test size divided
tist lutionary by 10
transfer
learning
[83] Network Data scien- | ANN Sim. List of span lengths SNR RMSE in dB divided by 2

tist
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