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Digital twins capable of Quality of Transmission (QoT) estimation and prediction are powerful tools for
efficient design and operation of optical networks. In this paper, we employ machine-learning techniques
to enhance both the QoT estimation and prediction capabilities of an optical network digital twin. By
leveraging a method to infer or refine the unknown lumped loss distributions and amplifier gain spectra
for accurate characterization of the current optical network state, accuracy of estimation and prediction
are substantially improved. For QoT prediction, we further develop a novel neural-network architecture
for EDFAs, which after factory training on a single device and with fully loaded configurations only,
generalizes to partially loaded configurations seen after deployment and to different gain and tilt settings
and other physical devices of the same type. We combine refined parameters and a novel method that
predicts the difference in per-channel power when individual services are added or removed or multiple
services are lost due to a fiber cut. The impact of error amplification due to cascading of individual
components’ models are shown to be reduced, yielding predictions that are substantially more accurate
than simply cascaded predictions. As the network ages, the digital twin can be updated by retraining,
while using only information available in the current network state. © 2023 Optica Publishing Group
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1. INTRODUCTION

Digital twins hold the promise of enabling efficient design and
operation of complex optical networks. They may be used as
tools for offline system simulation and aid the design of low-
margin optical networks [1]. They can also serve as a proxy
for online network (re-)optimization, resource (re-)allocation,
service upgrade and quick failure resolution. The development
of digital twins is driven by advances in machine learning (ML)
techniques which facilitate modeling and decision taking based
on large amounts of data [2]. In addition, ML enables the de-
scription of network components which are inherently difficult
to model using traditional approaches based on device physics.
A prominent example are Erbium-doped fiber amplifiers (ED-
FAs), for which several neural network (NN)-based models have
been developed [3–7].

Accurate Quality of Transmission (QoT) estimation and pre-
diction is essential to the design and operation of coherent opti-
cal fiber networks. Digital twins should therefore support these
two basic functions. The main source of error in QoT estima-
tion stems from missing or inaccurate knowledge of QoT input
parameters. Recently, ML-based methods to refine QoT inputs

have been developed [4, 8–10]. ML-based approaches to predict
and optimize power evolution and signal-to-noise ratio (SNR)
[11–16] or QoT [17] have been developed independently.

The design of digital twins often follows a modular approach.
Models for the various components (amplifiers, fibers, etc.) and
their predictions are cascaded according to link composition.
This modularity provides great flexibility. ML models for the
amplifiers can be trained as part of the manufacturing process.
When possible, link components can be modeled using simpler
physics-based models which are described by a handful param-
eters and are typically easier to train. An example is the power
evolution in fiber governed by a differential equation to account
for stimulated Raman scattering (SRS) [18]. Lumped losses can
be taken into account explicitly, since the power evolution is com-
puted at any point between modules in the model cascade. As
a result, constituent models can simply be replaced and param-
eters can be adjusted when network properties change during
the network lifetime due to, e.g., fiber repairs or device replace-
ments. The model can hence be kept up to date without the
necessity of retraining. An issue with this approach, however,
is error amplification of the cascaded predictions. The error is
amplified due to inaccurate inputs from previous predictions in
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the cascade. This problem has not received much attention in
the literature so far, mainly due to the experimental limitation
to short links. Significant error accumulation over 10 EDFAs
was reported [19], but not specifically addressed. In most other
studies, the number of cascaded ML models of individual ampli-
fiers [12–15] or entire optical multiplexing sections (OMSs) [16]
was limited to two or three. While visible, error amplification
was not too severe. The error typically increases exponentially,
imposing stringent requirements on the prediction accuracy of
individual models in the cascade. This may be difficult to attain
in practice, because typically several models are cascaded and
accuracy limitations stem from the inherent and unavoidable
prediction errors of a trained (ML) model, or differences in the
training and test data distributions.

An alternative is a single monolithic ML model (a deep neural
network or more advanced architectures), which describes (part
of) an optical network or link end-to-end and predicts QoT from
its input. Hence error amplification is not an issue. Since the
model has to generalize to new settings as network properties
such as amplifier gain and tilt settings change during network
operation, however, the configuration space (the possible com-
binations of all settings and inputs) is exponentially large. The
amount of data required typically increases exponentially with
the number of devices in the link. In addition, the model has to
be retrained as the network ages and changes its properties. This
is challenging as training data is very limited during network
operation. As the model treats the whole link as a black box
it also lacks explainability. Due to the size and complexity of
optical networks, practical approaches would likely still require
cascading models for subunits of the network, as in [16].

In this paper, we follow the modular approach and build a
machine-learning enhanced digital twin of an optical link with
up to 15 cascaded fiber spans and 18 amplifiers. We leverage
a method to accurately characterize the current network state
in terms of lumped losses and amplifier gain spectra, which
we call QoT parameter refinement, or input refinement (IR) for
short [10]. IR can accurately estimate power profiles and im-
prove SNR estimates independent of spectral occupation [20].

For QoT prediction, we replace estimated static gain spectra
of the EDFAs by NN-based ML models (EDFA-ML) to account
for their load dependence [20]. The models are trained simulat-
ing offline factory training and subsequent deployment in the
field. They generalize over arbitrary nominal amplifier gain and
tilt settings. We propose a novel NN architecture which outper-
forms generic NNs, converges faster, and better generalizes to
the data distribution in the field.

To tackle error amplification, we propose a new method that
predicts changes in the per-channel power relative to the current
state when the network undergoes a transition to a new state
by addition or removal of multiple services. Through the novel
combination of ML-based EDFA models with IR (EDFA-ML +
IR) we demonstrate more accurate SNR and power evolution
predictions, resulting in significant accuracy gains for QoT pre-
diction.

The paper is organized as follows. In Sec. 2, we recall the
QoT parameter refinement approach from [10]. Sec. 3 describes
the new NN architecture of the constituent ML models for the
EDFAs and their performance evaluation. Sec. 4 introduces
our novel framework for making ML-based predictions after
service addition or removal, which leverages the QoT parameter
refinement. In Sec. 5 we evaluate the new method for QoT
estimation and prediction in various scenarios. We show that it
provides an accurate and robust static characterization even for

partially loaded networks. We conclude in Sec. 6.
This work is an extension of [10, 20], of which part of the

results are reproduced in Sec. 5B with additional details. Sec. 3
reports unpublished details on the EDFA ML models. The com-
bination of EDFA-ML with IR in Secs. 4 and 5C is entirely new.

2. QOT PARAMETER REFINEMENT

For our digital twin to serve as proxy for QoT estimation, we
require a quantitative, static characterization of the current net-
work state. Among the necessary QoT parameters, the ones that
we refine are in particular the amplifier gain spectra and lumped
(connector) losses. Due to cost considerations, these parameters
are not routinely monitored in deployed networks. Furthermore,
uncertainties in the parameters inherent to real-life conditions
increase over the network life, leading to increased QoT margins.
This raises the problem of obtaining a complete characterization
of the network state from incomplete or inaccurate measurement
data [8, 10]. IR is a method to reconstruct or refine missing or
uncertain QoT parameters, which is briefly described here.

For concreteness, we consider the generic OMS depicted in
Fig. 1 as the building block connecting the network nodes of an
optical network. Wavelength selective switches (WSSs) at the
OMS entrance and end allow to add or remove services. We
only assume availability of monitoring data that is realistically
monitored in deployed networks. In particular, we assume that
optical power monitors (OPMs) are available to provide power
spectral information at the output of the first and last EDFA
only. Amplifier nominal gain and tilt settings and noise figures
are assumed to be known.1 We further assume the total input
and output power of each in-line amplifier to be monitored.
Hence total span loss, including lumped and fiber losses, can be
deduced. Fiber loss and Raman gain spectra can be inferred from
datasheets assuming knowledge of the fiber length and fiber
type from the network specifications. The difference between
total span losses and estimated fiber loss are ascribed to total
lumped losses δi + δ′i , while their distribution between span
input and output (the individual values of δi and δ′i ) is in general
unknown. Uncertainties in the fiber attenuation coefficient and
Raman gain are hence absorbed by the lumped losses.

The method is based on a digital twin of an OMS (cf. Fig. 1),
which is an ML model in which the EDFA gain spectra Gi(λ)
and the input and output lumped losses δi and δ′i of each span i
serve as parameters (as opposed to a generic NN architecture).

In the IR process described in Ref. [10], refined estimates of
these QoT parameters are obtained solely based on the knowl-
edge of the per-channel output power at OPM level and the
per-channel SNR, which serve as the ground truth. This is made

1Here we assume noise figures to be constant, but more elaborate models that
relate amplifier gain spectra to per-channel noise figures can be easily incorporated.

Fig. 1. Schematic of an optical multiplexing section with
wavelength-selective switches (WSS) and an optical power
monitor (OPM) that measures per-channel power.
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possible by taking the link physics into account. In a forward
pass, propagation of the power spectrum through the fiber ac-
counts for SRS according to the model [18]:

∂

∂z
P(z, λj) =−

N
∑

k=j+1

f j

fk
gR(∣ f j − fk ∣)P(z, λk)P(z, λj)

+

j−1

∑
k=1

gR(∣ f j − fk ∣)P(z, λk)P(z, λj)− ρ( f j)P(z, λj).

(1)

Here f j and λj are the frequency and wavelength of channel j,
respectively, and according with the literature frequencies are
ordered such that f j < fk for j > k. ρ( f j) denotes the wavelength-
dependent fiber attenuation and gR(∣ fk − f j∣) is the normalized
and polarization-averaged Raman gain spectrum. The effect of
filtering is left out of this study but can be straightforwardly
addressed as in [21]. SNR evolution is obtained based on the am-
plifier noise figures Fi(λ) and the Kerr effect through nonlinear
interference estimates based on the EGN model [22].

By performing forward passes through the OMS with current
values of the lumped losses and amplifier gain spectra, predic-
tions of the per-channel output power and SNR of the OMS are
obtained. The QoT parameters are iteratively refined through
suitable gradient descent updates, with the goal of minimizing
the prediction error relative to the ground truth. The method
estimates the per-channel power evolution through the OMS
as a byproduct. It is important to note that even though in a
forward pass in IR models are cascaded, the boundary condition
provided by the OPM at the OMS end allows to obtain accurate
gain spectra and per-channel power evolution anywhere inside
the OMS. IR allows to estimate the QoT parameters without
cross-compensation between effects, such as the refined am-
plifier gain absorbing an inaccurate Raman tilt. Each OMS is
optimized separately. More details can be found in [10]. We
note that our conclusions on the EDFA-ML+IR method are inde-
pendent of the details of how IR is performed. Any reasonably
accurate method to refine the lumped losses and amplifier gain
spectra will work.

We stress that the method is extremely data efficient: only
information in the current network configuration, in particular
the current per-channel SNRs and OPM level power spectra
are used during learning. This is remarkable considering the
number of unknowns: For an OMS with Nsp spans and Ns
services, we have Nsp EDFAs and hence Nsp × Ns unknown
gain values and 2Nsp unknown lumped losses, while there are
2Ns per-channel output powers and SNRs and 2Nsp total span
input and output powers. Hence for more than two spans, the
problem is in general underdetermined. However it empirically
converges to QoT parameters which are close to the ground
truth as will be shown below.

As a consequence of the undetermined character of the prob-
lem, it is not possible to replace individual amplifiers by more
elaborate neural network models for QoT prediction, unless these
are trained using additional data sources. This is discussed in
the next section.

3. NEURAL NETWORK EDFA MODELS

For accurate QoT prediction it is essential to account for the
load dependence of the EDFA gain ripples. The difficulties of
formulating accurate analytical models has motivated NN-based
modeling [3, 5, 7].

a) b)

Fig. 2. Neural network architectures used for the EDFA mod-
els. a) Generic neural network. b) The proposed RatioNet
architecture with multiplicative skip connections.

We train machine learning models for the two types of com-
mercial amplifiers deployed in the OMSs of our testbed. These
have a maximum gain of 21 and 25 dB (denoted EDFA21 and
EDFA25, respectively) and are equipped with gain flattening
filters and automatic gain control. The latter adjusts the actual
average gain to be within 0.1 dB of the nominal gain.

We acquire training datasets for a single physical device of
each type. The trained models predict the amplifier response
for other physical devices of the respective type. We assume
that nominal gain and tilt settings are not known until deploy-
ment. To simulate offline factory training, we create fully and
partially loaded datasets ex situ with the respective EDFAs re-
moved from the OMS and whose distribution is independent
of the one an amplifier will see in the field, but covers a similar
dynamic range. In the following, we mainly use fully loaded
configurations for training. This is because separate treatment
of unloaded channels makes uniform sampling less straightfor-
ward, and including particular partial load patterns introduces
biases. There is no reason that for a sufficiently large dynamic
range, models should not also generalize to partial loads. Here
we propose an architecture which generalizes to partial loads
particularly well despite being trained on full load data with
limited dynamic range.

The training dataset for EDFA21 consists of 7745 random
configurations of 75 GHz channels, where every second slot is
blocked for noise floor measurement to compute OSNR and
noise figures. The configurations can be viewed as fully loaded
with Nch = 40 channels of 150 GHz width over the 6 THz C-band.
Because of EDFA level broadening [23], small-scale details of
the spectral occupation have a small impact. Per-channel power
is obtained by integrating the trace of an Optical Spectrum An-
alyzer over the 150 GHz channels. The integral of the trace is
normalized based on a total power measurement with an un-
certainty of 0.1 dB. Per-channel power obtained from repeated
measurement of the same trace and with different resolution is
consistent with an uncertainty of less than 0.1 dB. Due to experi-
mental constraints, a dynamic range of around 10 dB is available
at the WSS to set the attenuation of each channel. The maximum
and minimum output power of the device imposes constraints
on the allowed gain values for a given total input power. We
therefore generate a loading case by first randomly selecting an
input power for each channel in the interval [−19.5,−9.5] dBm,
so that total input power varies between -3.5 and 6.5 dBm. The
nominal gain value is selected in the interval of values allowed
by the device constraints. The tilt value is similarly chosen ran-
domly within [0, 3] dB, using a uniform distribution on linear
scale. The resulting total output power of the dataset is skewed
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Model ↓ / Dataset→ Full Load Partial Load OMS Hidden layers Hidden units

RatioNet (P) 0.07 / 0.18 / 0.44 0.23 / 0.75 / 4.72 0.35 / 0.85 / 1.22 2 128

Generic NN (G) 0.07 / 0.18 / 0.44 0.30 / 1.10 / 6.26 0.37 / 0.90 / 1.32 2 128

Generic NN (P) 0.11 / 0.35 / 1.10 0.38 / 1.34 / 9.36 0.56 / 1.57 / 2.94 4 512

Table 1. Prediction accuracy in terms of RMSE / 99-percentile / maximum error f the distribution in dB for three NN architectures:
RatioNet (Fig. 2b) and a generic NN (Fig. 2a) trained on per-channel power (P) or gain (G). Results are reported for Full Load or
Partial Load on the same amplifier after training of the full load dataset. The prediction error for the OMS dataset is averaged over
the 4 EDFA21 devices in OMS AB. The 2229 partially loaded configurations are measured in situ in the OMS.

towards higher output powers and cut off at the maximum al-
lowed output power of 22.5 dB. The resulting gain distribution
is Gaussian-like with a mean of around 19 dB. Similarly, we
generate a second dataset of 4995 samples of partially loaded
configurations for testing, where each channel has a 50% proba-
bility of being loaded. Loaded channels have a dynamic range
of 10 dB in input power as before. Analogous datasets are gen-
erated for EDFA25. All data are presented to the NNs on linear
scale for training. Inputs and outputs are normalized, since oth-
erwise a ∼ 20 dB gap needs to be bridged between them. This
helps in particular shallower and narrower networks given that
the tanh activation is bounded in [−1, 1].

We train models based on two different NN architectures,
as shown in Fig. 2. Both architectures share the same inputs
and outputs. Each has Nch inputs for per-channel power and
Nch outputs for per-channel power or gain, respectively. Two
additional inputs are reserved for the nominal gain G and tilt T.
Fig. 2a) shows a generic NN (multilayer perceptron) to predict
per channel output power from the corresponding per channel
input. The architecture in 2b) is similar, but has additional short-
cut or skip connections, which connect each input directly to the
corresponding output. The skip connections are inspired from
residual networks or ResNets [24], but the motivation here is
different: In ResNets, the input is added to the output of the
skipped layers. The skipped layers effectively learn the difference
between input and output of the skipped block, i.e., the residual
and hence the name. On the contrary, the skip connections in
our architecture are multiplicative, i.e. the input is multiplied
to the output. As a result, the skipped layers effectively learn
the ratio between output and input, i.e., the gain. We therefore
refer to this architecture as a RatioNet. The motivation is that
per-channel output power is difficult to model by an NN since
neighboring outputs can differ by orders of magnitude in am-
plitude. This has motivated training independent NNs for each
channel [7], which however uses computational and memory
resources inefficiently. Gain, on the other hand, varies slowly
from channel to channel. In this architecture, the constraint that
– neglecting ASE – channels with zero input should have zero
output is automatically fulfilled. Note that the skip connections
participate in backpropagation. This way, low-power channels
have a reduced impact on the network weights. This is different
from a generic NN that directly predicts per-channel gain, which
we also consider below.

We train all NN models with tanh activation functions (which
perform better than ReLu). The training is performed with a
batch size of 128 and using the Adam optimizer at a learning
rate of LR=0.001. Since we ultimately test the models on an
independent data set measured in the cascade, we use the entire
dataset for training and validation (80%/20% split).

The RatioNets are trained with one or two hidden layers with

32, 64, 128 or 256 hidden units per layer. Models with different
hyperparameters perform similarly. Similar behavior is also
observed for the generic NNs trained on gain as the output. In
the following, we use a single layer with 128 hidden units for
both model types and train them for 1000 epochs. Training time
ranges between one to two hours per model.

For the generic NN trained on output power, we observe
significantly slower convergence. We trained models with 1 to
4 hidden layers and 32, 64, 128, 256 or 512 hidden units per
layer and for 5000 epochs. Networks with wider layers perform
significantly better. The dependence on the number of layers is
typically weak for more than one layer. Contrary to the previous
models, predictions for unloaded channels are non-zero. We set
predictions for these channels to zero and exclude them from
the statistics. In the following we report errors for the best
performing models with 4 hidden layers and 512 units per layer.

Table 1 summarizes different prediction error metrics for the
three model types, all trained on the same full load dataset. We
report RMSE, as well as the 99-percentile of the error distribu-
tion and the maximum error. On the full load dataset, the RMSE
of RatioNet is as low as 0.07 dB, while that of the generic NN
trained on power is significantly higher (0.11 dB). Also the maxi-
mum error is significantly larger (1.10 vs. 0.44 dB). The generic
NN trained on gain converges faster in training (∼200 vs. ∼1000
epochs) but performs very similarly2. RatioNet performs slightly
better than the generic NN trained on gain, but errors are the
same when rounded to the second decimal. The advantage of
RatioNet becomes apparent for generalization to unseen test dis-
tributions. For the partially loaded dataset, RMSE increases to
0.23 dB for RatioNet and to 0.30 dB for the generic NN trained on
gain, showing that RatioNet is better at generalizing to partially
loaded configurations despite being trained on fully loaded ones
only. It shows the advantage of introducing skip connections
inside the model. The relatively large maximum error stems from
a loading configuration for which a single channel has very low
output power. The prediction has even lower power such that,
even though the absolute error is small, the relative error is large.
The third dataset labeled OMS contains 2229 partially loaded
configurations (90 distinct input spectral loads with ∼25 lumped
loss configurations each) measured in situ in the OMS (see Sec.
5). Errors are averaged over the four out of six intermediate
amplifiers of the same type. Also here RatioNet performs better.

For all datasets the performance of the generic NN trained
on power is the worst, reflecting the fact that gain is easier
to model than power. The advantage of RatioNet lies in the
ability to better generalize to partially loaded configurations.
We expect performance of RatioNet to be further improved by
increasing the dynamic range to cover lower input per-channel

2Output power is obtained by multiplying gain predictions with input power;
the relative errors for gain and power predictions are hence identical.
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Full Load Partial Load OMS

0.11 / 0.39 / 0.92 0.13 / 0.46 / 5.04 0.22 / 0.61 / 1.16

Table 2. Prediction accuracy for RatioNet in terms of RMSE /
99-percentile of error distribution / maximum error in dB after
training on the partial load dataset.

power to better account for partial loads. Further increasing
frequency granularity may help to some extent, even though
the prediction error increases only moderately (from 0.18 to 0.25
for the 99-percentile on the full load dataset) when granularity
is reduced by a factor of two by aggregating two neighboring
channels and restoring their relative input power ratio at the
output. The overall performance is quite satisfactory given that
here the networks generalize to samples which lie outside of the
training distribution, as well as to different physical devices of
the same type and to unseen nominal gain and tilt values. RMSE
is comparable to results previously reported in the literature
[3, 7]. These models will be used for QoT prediction in Sec. 5.

Finally we remark that satisfactory results for training on
the partial load dataset were only obtained with RatioNet. Ta-
ble 2 shows the performance. It is comparable to training on
the full load dataset. The performance on the OMS is even
slightly better than training on the full load data, likely because
the partial load dataset has a larger dynamic range due to the
presence of unloaded channels. Due to potential biases in a rela-
tively small partial load dataset, even though less problematic
for RatioNet, the approach is less controlled. We therefore use
RatioNet trained on the full load dataset in the following.

4. ML-BASED QoT PREDICTION LEVERAGING QoT PA-
RAMETER REFINEMENT

In this section we describe how to enable the digital twin for QoT
prediction when the network changes state through addition or
removal of services. We distinguish two basic methods of lever-
aging IR for this purpose. In both methods, the static amplifier
gain spectra estimated by IR are replaced by NN-based models
(introduced in Sec. 3) when computing power evolution through
the OMS. This is necessary because the EDFA gain spectra are
highly load dependent [4], in particular for sparsely loaded sys-
tems. In the first method, power evolution is predicted simply by
cascading the EDFA-ML and fiber models and QoT is estimated
based on predicted power evolution. The resulting predictions
still leverage IR through the refined lumped losses. We refer
to this method as EDFA-ML with input refined lumped losses
(EDFA-ML + IRLL). Accurate estimation of lumped losses has
previously been shown to be crucial for QoT estimation for both
partially and fully loaded networks [10, 20]. In Sec. 5 we show
that the refined lumped losses also improve QoT predictions com-
pared to the baseline.

In the second method, we propose to combine EDFA-ML
with IR to predict changes relative to the current network state,
the latter being characterized with high accuracy by means of
IR. Since this method uses not only IR lumped losses, but also
per-channel power estimates from IR, we refer to this method as
EDFA-ML+IR. We explain the principle for the case of service
addition. The case of service deletion is completely analogous.

We denote by PIR, ba
i,out (λj), PML, ba

i,out (λj) and PML, aa
i,out (λj) the op-

tical output power spectrum of the i-th amplifier at wavelength
λj predicted by IR or ML respectively, before (ba) or after ad-

Fig. 3. Two ways of computing cascaded power predictions
for amplifier i along the OMS before service addition. i) Using
PIR,ba

i,in as approximation for the ground truth at amplifier input
and EDFA-ML to predict output. ii) Using the ground truth at
OPM level and cascade predictions along the OMS.

dition (aa) of a service. We omit the dependence on λj in the
following. The per-channel power prediction at the output of
the i-th amplifier is then computed as follows:

Paa
i,out = PML, aa

i,out + PIR, ba
i,out − PML, ba

i,out . (2)

Note that Eq. (2) applies to all services – existing ones and newly
added services. This result can be derived as follows. Define
the difference between the ground truth output power and the
corresponding machine learning prediction before (respectively
after) channel addition as ∆ba

i,out = PGT, ba
i,out − PML, ba

i,out and ∆aa
i,out =

PGT, aa
i,out − PML, aa

i,out , respectively. If ∆aa
i,out were known, the ground

truth could obviously be obtained exactly as Paa
i,out = PML, aa

i,out +

∆aa
i,out = PGT, aa

i,out . We make two approximate assumptions: i) we
assume that the correction before and after service addition
is similar for the established services: ∆ba

i,out ≈ ∆aa
i,out and ii),

since ∆ba
i,out is unknown (since the ground truth is unknown), we

replace the ground truth before addition by the approximate but
accurate [20] IR value: PIR, ba

i,out ≈ PGT, ba
i,out . Put together, we obtain

Paa
i,out = PML, aa

i,out +∆aa
i,out ≈ PML, aa

i,out +∆ba
i,out

≈ PML, aa
i,out + PIR, ba

i,out − PML, ba
i,out , (3)

which is the result given above. Note that for the service(s) to
be added, ∆ba

i,out is zero, since both PGT, ba
i,out and PML, ba

i,out are zero.

Hence Paa
i,out = PML, aa

i,out for newly added services.
Accuracy compared to the directly cascaded machine learn-

ing prediction PML, aa
i,out (without using IR) can be gained when the

approximation errors of the two above approximations are small
compared to the correction term, i.e. ∣∣PIR, ba

i,out −PGT, ba
i,out ∣∣≪ ∣∣∆

aa
i,out∣∣

and ∣∣∆ba
i,out −∆aa

i,out∣∣≪ ∣∣∆
aa
i,out∣∣. The former is directly related to

the accuracy of the IR method, which we can assume to be accu-
rate for gain profile estimation (cf., e.g., Fig. 5). We expect the
latter to be fulfilled for cascaded ML predictions whose error is
dominated by error amplification.

Alternatively we can interpret Eq. (2) as Paa
i,out = PIR, ba

i,out + dML
i,out,

where dML
i,out = PML, aa

i,out − PML, ba
i,out . When changes in the network

configuration due to addition or removal of a few services are
small, PIR, ba

i,out estimated by IR with high accuracy as shown in
Sec. 5 is the dominant term and ML provides a small correction.

Here PML, aa
i,out must be computed by cascading, since only the

input power spectrum at the first OMS is known3. The ML pre-
dictions PML, ba

i,out before service addition in Eq. (2) can in principle

3The power of the service to be added is assumed to be provided by the operator.
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Fig. 4. Schematic of an example optical network topology. In
the experimental validation, without loss of generality, we
consider the four-node tandem subnetwork ABCD.

be computed in three different ways. Two are schematically il-
lustrated in Fig. 3. In Method i) the prediction at the output of
amplifier i is obtained from PIR, ba

i,in estimated by IR, followed by
a single EDFA-ML prediction. This is possible since the power
spectrum at each EDFA is a byproduct of IR. In method ii) it
is obtained by cascading the predictions starting from the GT
power spectrum provided by the OPM of the first OMS. A third
method is to use the output power PIR, ba

i,out provided by IR. In this

case, Eq. (2) reduces to Paa
i,out = PML, aa

i,out + PIR, ba
i,out − PIR, ba

i,out = PML, aa
i,out ,

i.e. the cascaded EDFA-ML prediction based on the IR lumped
losses (EDFA-ML+IRLL).

While method ii) to compute PML, ba
i,out is per se less accurate

than i) due to cascading, it is analogous to the computation of
PML, aa

i,out after service addition. One may therefore expect errors to
be correlated, according to our assumption i). In Sec. 5 we show
that as a result, error cancellation between the ML predictions
before and after service addition occurs, which greatly enhances
the prediction accuracy. The resulting digital twin provides per-
channel SNR and power predictions that are substantially more
accurate than naively cascaded predictions.

5. EXPERIMENTAL VALIDATION

A. Experimental setup and baseline
Without loss of generality, we consider the tandem subnetwork
ABCD of the network depicted in Fig. 4. Our method is appli-
cable to generic mesh networks. Since IR can be done for each
OMS independently, topological properties of the network are
not used. The subnetwork consists of 3 OMS, such as the one
schematically represented as in Fig. 1. The 3 OMS are composed
of 5 fiber spans each (5×80 km SMF, 5×100 km PSCF, 5×100 km
PSCF). Variable optical attenuators (VOAs) before and after each
fiber span are used to emulate lumped losses up to 3 dB. In
OMS AB all 6 EDFAs are of type A, while OMS BC and CD each
contain 6 amplifiers of both types A and B.

For all experiments, we emulate various channel loading con-
figurations of the network using an amplified spontaneous emis-
sion (ASE) source, spectrally shaped by a wavelength-selective
switch (WSS). Per-channel amplifier gain spectra Gi(λ), input
and output power spectra Pi(λ) and noise figures Fi(λ) as well
as total input and output power are measured at each amplifier.
These ground truth values are used for benchmarking purposes
(computation of estimation or prediction errors), or fed into our
QoT tool to emulate ground truth SNRs unless they are mea-
sured. Only the power spectra at OPM level (at the output of
the first and last EDFA), the total input and output power of the
EDFAs, and measured or emulated ground truth SNRs are used
for the input refinement.

Without IR, it is natural to assume that amplifier gain spectra
are free of gain ripples and hence vary linearly with wavelength
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Fig. 5. Refined (IR) and ground truth (GT) power profiles for
the four inner EDFAs in OMS BC for two different channel
loading configurations. Dots correspond to ground truth, lines
correspond to IR.
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Fig. 6. Standard box plot showing the distribution of SNR
estimation error based on baseline QoT parameter inputs,
refined inputs (IR) and ground truth (GT) inputs, for the same
two channel configurations as in Fig. 5.

(in dB) according to the nominal gain and tilt settings of each of
the amplifiers ("linear tilted gains"). Lumped losses are assumed
to be equally distributed between fiber input and output (δi = δ′i ).
In the remainder of the paper, we refer to these assumptions
as the baseline and use them as a benchmark for both QoT
estimation and prediction. Tables 3 and 4 list the assumptions
underlying the different methods.

B. Validation of QoT estimation
We first assess our digital twin for QoT estimation. We consider
two network configurations with service allocation as depicted
in Fig 4: Between 15 to 30 services (depending on OMS) with
75 GHz ASE-shaped channels are allocated over a 100 GHz grid
in the C-band. SNR ground truth is measured by sweeping a
probabilistically shaped 16-QAM channel from a commercial
real-time 200 Gb/s transponder over the 30 occupied spectral
positions.

Fig. 5 shows estimated output power profiles after IR (lines)
vs. the measured ones (markers) of all intermediate EDFAs of
OMS BC for the two block-loaded configurations. IR estimates
EDFA output power profiles within 0.2 dB of the measured
power profiles for both loading configurations and all EDFAs.
Fig. 6 shows the corresponding distribution of SNR estimation
errors relative to ground truth SNRs of all 30 channels obtained
by QoT estimation for the baseline, ii) input refinement (IR) and

GT IR IR + baseline LL Baseline

GT gains IR gains IR gains Linear tilted gains

GT LLs IR LLs δi = δ′i δi = δ′i

Table 3. The different cases compared in QoT estimation and
their underlying assumptions.
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Fig. 7. Per-channel power obtained according to baseline as-
sumptions of linearly tilted gains and lumped losses, after
input refinement (IR) and measured ground truth (GT) of an
intermediate EDFA in OMS AB for a sparsely loaded network
configuration with 10 services randomly placed in the band.
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Fig. 8. a) Distribution of discrepancies of per-channel SNR es-
timation ∣SNRGT,dB

− SNRpred,dB
∣ from IR after gain refinement

and with refined or baseline distribution of lumped losses.
The baseline (linearly tilted gain and equal distribution of
lumped losses) is shown for comparison. Accurate estimation
of the lumped loss distribution has a significant effect on QoT
estimation accuracy. b) The same as in a), but for power dis-
crepancies ∣PGT,dB

− Ppred,dB
∣.

iii) and ground truth (GT) values for gains and lumped losses
(see Table 3). SNR estimation is improved by up to 2 dB after
IR compared to the case of datasheet assumptions underlying
the baseline. An average (maximum) error of 0.2 dB is obtained
after refinement, respectively, down from more than 1 dB. The
maximum error after IR is 0.6 dB. The values for IR are close
to the values obtained by QoT estimation based on GT gains
and lumped losses, showing that accuracy, though very high, is
limited by QoT tool estimation error rather than IR.

Fig. 7 shows the measured (GT) output power profile for a
random sparse loading configuration with only 10-12 services
of an intermediate EDFA of OMS AB compared to the output
power profile estimated using the baseline and after IR. Here
up to 6 dB variation between channel powers is observed. Such
power excursions can be a consequence of a “set and forget”
mode of operation of an optical network, whereby the powers
of existing services are left to drift as new services are added.
Despite the large power variation between channels, per-EDFA
output power profiles are still estimated by IR within 0.2 dB
compared to the ground truth. The accuracy of the technique
for power profile estimation does not depend on the specific
features of the channel loading configuration (e.g., block vs.
sparse loading).

In order to further validate the IR technique for lumped loss
estimation, we performed a second measurement campaign
using OMS AB. 90 randomly generated input power spectral
loads with 5 up to 40 ASE-shaped channels are generated via a
WSS. Here and in the remainder of the paper we use a 75 GHz
WDM grid over the 6 THz C-band, where every second channel
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Fig. 9. Example SNR (a) and power spectra (b) measured
(ground truth, GT) and estimated using baseline assumptions
(Baseline), input refinement with baseline lumped losses (IR
baseline LL) and IR for both gains and lumped losses. Dots
show service locations of the 30 services (75% spectral occupa-
tion). Lines are a guide to the eye.

slot is blocked for noise floor measurement. For each service
allocation we generate 25 distinct lumped loss configurations.
For each configuration, the lumped losses δi, δ′i , amplifier gain
spectra Gi(λ), power spectra Pi(λ) and noise figures Fi(λ) are
recorded and mapped into the digital twin for QoT estimation
to emulate ground truth SNRs. Among the up to 40 channels,
two are modulated using commercial 68 GBd 400 Gbps real-time
transponders to cross-validate the emulated QoT SNR ground
truth estimates.

Fig. 8a) shows the probability density function (PDF) of SNR
errors for more than 40000 services. The RMSE is reduced from
0.40 dB for the baseline by more than 0.30 dB down to 0.07 dB for
IR. The RMSE for IR with baseline lumped losses is reduced by
only 0.08 dB compared to that of the baseline, showing that esti-
mation of the lumped loss distribution is essential for accurate
QoT estimation. Fig. 8b) shows the corresponding distribution
of per-channel power estimation error at the second-to-last am-
plifier in the OMS (since the output power spectrum of the last
amplifier is known thanks to an OPM, we do not report it). Here
the large RMSE of the baseline of 2.25 dB is reduced significantly
down to 0.33 dB using IR. Using IR with baseline lumped losses
yields an RMSE of 0.43, i.e. the refinement of the lumped losses
in addition to the amplifier gain spectrum improves power esti-
mation accuracy by about 0.1 dB.

One can further see that the power discrepancies for IR with
baseline lumped losses exhibit a bimodal distribution. The peak
of the first mode of the distribution is close to the peak of the
distribution using IR with refined lumped losses. The peak of the
second mode is close to 1 dB. Thanks to an accurate estimation of
the power profiles using IR refined gains, the majority of channel
powers of the band are predicted within 0.4 dB on average,
similarly as with IR. The use of baseline lumped losses however
leads to inaccurate modeling of the power profile Raman tilt.
This impacts mostly channels at the band edges and gives rise
to a second mode in the distribution. Using refined lumped
losses improves modeling of the Raman tilt and the estimation
accuracy for extreme channels, which can be observed in Fig. 9b)
as discussed in the following.

Fig. 9a) shows the SNR for an example load with 30 services,
corresponding to 75% spectral occupation. One can clearly see
that refining the amplifier gain profiles while keeping baseline
lumped losses (IR + baseline LL) leads to a significant improve-
ment of SNR estimation compared to the baseline. In particular
the shape of the resulting SNR profile is better captured, how-
ever retaining an offset and tilt compared to the ground truth
(GT). A corresponding improvement in power prediction accu-
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Fig. 10. Example SNR (a) and power spectra (b) measured
(ground truth, GT) and estimated using baseline assumptions
(Baseline), input refinement with baseline lumped losses (IR
baseline LL) and with both IR gains and lumped losses for a
sparse loading with only 5 services (12.5% spectral occupation)
marked by dots. Lines are a guide to the eye.

racy can be seen in Fig. 9b). For both SNR and power discrepan-
cies, estimation of the lumped loss distribution using IR reduces
those errors, yielding a very close match between estimated and
ground truth SNR and power.

In Fig. 10 we show SNR and power spectra for a sparse load-
ing with only 5 services, which allows similar conclusions. One
difference is that, in this particular case, total power at the in-
put of the fiber and hence the Raman effect are reduced. Thus,
changing lumped loss values (e.g. using IR baseline LL or re-
fined IR lumped losses) has a negligible impact on the power
profile estimation accuracy, as seen in Fig. 10b). The error in
per-channel power estimation in these cases is dominated by
the estimation error of the gain profiles, rather than lumped
losses. This example illustrates that, despite the reliance of IR
on nonlinear Raman and Kerr effects [10], IR performs well for
power and SNR estimation in sparsely loaded scenarios with a
low amount of nonlinear effects.

C. Validation of QoT prediction

In this section we validate QoT prediction of the digital twin
in dynamic networks with varying service allocation. We use
the same dataset as in the previous section, with 90 random
loading configurations generated with 5 up to 40 ASE-shaped
75 GHz channels in every second channel slot, and with 25
different input and output lumped loss configurations each.
For the assumptions underlying the different approximations
considered, see Table 4.

We first predict the SNR of existing and newly established
services in OMS AB using the RatioNet NN models of Sec. 3
for EDFA gain prediction to account for the load dependence
of amplifier gain spectra. IR is used to estimate the lumped
losses, which are load-independent (EDFA-ML+IRLL). Fig. 11a)
compares distributions of SNR prediction errors for all services
for the baseline and EDFA-ML+IRLL. We also consider a hybrid
approach where gain profiles are predicted using EDFA-ML for
configurations with up to 30 services (up to 75% band occupa-
tion). For higher occupation, gain profiles are replaced by IR
gains for already existing services, while for newly added ser-
vices, gain values are linearly interpolated or extrapolated from
the IR gains (EDFA-ML+IRLL hybrid). This is reasonable since
gain profiles tend to be rather stable when adding new services
in a highly loaded scenario.

For EDFA-ML+IRLL, both RMSE and maximum error are re-
duced, by 0.2 and 0.7dB, respectively, compared to the baseline.
We find that large values of maximum error are in general due
to outliers when EDFA-ML is applied to predict amplifier gains.

0.0 0.5 1.0 1.5 2.0
SNR discrepancies [dB]

0

5

10

PD
F

a) EDFA-ML+IRLL hybrid
EDFA-ML+IRLL
Baseline

0.0 0.5 1.0 1.5 2.0
SNR discrepancies [dB]

0

2

4

6

PD
F

b) EDFA-ML+GTLL
EDFA-ML+IRLL

Fig. 11. a) Distribution of discrepancies of per-channel SNR
predictions ∣SNRGT,dB

− SNRpred,dB
∣ at the end of the OMS from

EDFA-ML+IRLL and a hybrid approach where , for band occu-
pation > 75%, gain spectra are replaced by those estimated by
IR for existing services and gains are inter- or extrapolated for
new services (EDFA-ML+IRLL hybrid). The baseline is shown
for comparison. b) SNR discrepancies for EDFA-ML+IRLL and
EDFA-ML gain prediction using ground truth lumped losses
(EDFA-ML+GTLL). The distributions are virtually the same.
EDFA-ML prediction accuracy is the limiting factor for EDFA-
ML+IRLL, rather than lumped loss accuracy.
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Fig. 12. a) RMSE of per-channel power predictions for EDFA-
ML+IR with methods i) and ii) for the ML prediction before
channel addition as illustrated in Fig. 3, compared to EDFA-
ML+IRLL. b) Distribution of power discrepancies of EDFA-
ML+IR based on method ii) compared to EDFA-ML+IRLL and
the baseline at the last amplifier of the OMS.

In the hybrid approach the RMSE is reduced by an additional
0.1 dB while the maximum error is reduced by an additional
0.3 dB compared to EDFA-ML+IRLL. This shows that, in highly
loaded scenarios (e.g. towards the network end-of-life), IR al-
lows to improve SNR estimates by describing the gain ripples
more accurately than the NN models. Note that this is based on
the implicit assumption that gain spectra do not change when
services are added. In other words, the NN error in some cases
is larger than the change to be predicted. Fig. 11b) compares
EDFA-ML+IRLL with the case where EDFA-ML is combined
with ground truth values instead of IR estimated values for
the lumped losses (EDFA-ML+GTLL). The distributions are al-
most the same, indicating that prediction accuracy is indeed
limited by the EDFA-ML prediction error, rather than the error
in the lumped loss distribution due to IR. These results moti-
vate combating error amplification stemming from cascading the

EDFA-ML+IR EDFA-ML+IRLL Baseline

EDFA-ML gains EDFA-ML gains Linear tilted gains

IR δi, δ′i and PIR
i IR δi, δ′i δi = δ′i

Table 4. The main approximations considered in QoT predic-
tion and their underlying assumptions.
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Fig. 13. a) Illustration of a typical fiber cut scenario over three
OMS with services impacted directly (as they copropagate
with lost services) and indirectly (as they copropagate with
services that are directly impacted, but not with lost services).
Lost services are marked in red and remaining services in blue.
b) Worst-case scenario simulated in the experiment, where
lost services are copropagating over all three OMS and all
remaining services are directly impacted.

EDFA-ML predictions to further improve prediction accuracy.
To this end, we employ the EDFA-ML+IR method. We first ap-

ply it to successive addition of individual services. Here we use
an experimental campaign where up to 40 ASE-shaped 75 GHz
channels in every second slot of the 6 THz C-band are loaded
sequentially from small to large wavelengths starting from a
single service. Per-channel power for the new and previously
established services is predicted by EDFA-ML+IR.

As explained in Sec. 4, the ML predictions PML, ba
i,out in EDFA-

ML+IR can be computed using different methods. Fig. 12a)
compares EDFA-ML+IRLL with EDFA-ML+IR based on these
methods. The RMSE of EDFA-ML+IRLL essentially increases
exponentially with the number of amplifiers due to error ampli-
fication at a slope of about 0.25 dB per amplifier. EDFA-ML+IR
with method i) is more accurate, but still increases almost as
fast. With EDFA-ML+IR with method ii) however, the increase is
significantly slower. This suggests that errors in the ML predic-
tions before and after service addition are correlated and error
cancellation occurs between them (cf. Sec. 4). Fig. 12b) shows
the distribution of power discrepancies of EDFA-ML+IR based
on method ii) compared to EDFA-ML+IRLL and the baseline at
the last EDFA of the OMS. The assumptions underlying these
approximations are summarized in Table 4. RMSE is reduced
from 2.47 dB (Baseline) to 1.41 dB (EDFA-ML+IRLL) and 0.35 dB
(EDFA-ML+IR M ii). This confirms significant accuracy gains
of the method. We only use the more accurate method ii) in the
following.

C.1. Fiber cut scenario

In this section we evaluate the EDFA-ML + IR method for a
fiber cut scenario, in which multiple services are lost simulta-
neously. This example is motivated by the fact that changes
in the network configuration are larger than for addition and
deletion of individual services, which poses a more stringent
test on the method. Fig. 13a) illustrates a typical fiber cut sce-
nario in part of a meshed network where services copropagate
over different routes. One can primarily distinguish directly
impacted services, which copropagate with services that are lost,
and indirectly impacted services, which copropagate with ser-
vices that are directly impacted, but not with lost services. To
simplify the test case generation, we consider in our experiment
the worst-case scenario for a tandem network of up to 3 OMS
shown in b), where the remaining channels copropagate with
lost services over all 3 OMS and hence are directly impacted. We
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Fig. 14. Distribution of discrepancies of per-channel power
predictions ∣PGT,dB

N,out − Pad,dB
N,out ∣ after service drop (ad) during a

fiber cut. a) After traversing 3 OMS and N = 18 amplifiers
and after dropping between 1–5 services. b) After traversing
2 OMS and N = 12 amplifiers and dropping between 1–33
services.
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Fig. 15. Distribution of discrepancies of per-channel SNR pre-
dictions ∣SNRGT,dB

− SNRad,dB
∣ after service drop (’ad’) and

based on power evolution predictions. a) After traversing 3
OMS and N = 18 amplifiers and after dropping between 1–5
services. b) After traversing 2 OMS and N = 12 amplifiers and
dropping between 1–33 services.

generated 94 pairs of loading cases, with the first in each pair
generated randomly, having between 7 and 40 services. In the
second of each pair, between 1 and 33 randomly chosen services
are dropped.

The distribution of power discrepancies for this scenario are
shown in Fig. 14. Here the power Pad

N,out predicted after service
drop (ad) is computed for either EDFA-ML+IRLL, EDFA-ML+IR
or the baseline. Fig. 14a) shows power discrepancies after 3
OMS (N =18 traversed amplifiers) and for fiber cuts where be-
tween 1 and 5 services of the original configuration are dropped.
Fig. 14b) is for the case of 2 OMS (12 amplifiers), with up to 33
channels dropped simultaneously. In each case, IR is performed
on the configuration before dropping channels to estimate the
distribution of lumped losses.

The combination of EDFA-ML with IR estimated lumped
losses (EDFA-ML+IRLL) greatly improves the prediction of the
power of the remaining services in both scenarios. The RMSE
for power prediction is reduced by more than 3 dB compared to
the baseline. EDFA-ML+IR further reduces the RMSE for power
prediction by more than 1dB in both cases.

Fig. 15 shows corresponding results for the SNR discrepan-
cies ∣SNRGT

− SNRad
∣. Here ground truth SNRs are emulated

using QoT estimation based on ground truth lumped losses and
ground truth amplifier gain spectra. SNRs after channel deletion
are computed using the digital twin with power predictions ob-
tained by the respective method. EDFA-ML with refined lumped
losses reduces global RMSE by 0.5 and 0.4dB, respectively, for
the two scenarios and compared to the baseline.

Despite the large improvement in power prediction accuracy
of more than 4 dB for EDFA-ML+IR compared to the baseline,
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Fig. 16. a) RMSE of per-channel power predictions vs the num-
ber of cascaded amplifiers for EDFA-ML+IR, EDFA-ML+IRLL
and the case of no prediction, i.e. assuming that services re-
main unchanged after the fiber cut. b) Power discrepancies
at the last EDFA of the second OMS. The EDFA-ML+IR error
distribution is similar to the one obtained without prediction.

the improvement in SNR accuracy is relatively small. This is
because most services in the scenario are close to the nonlinear
threshold (NLT) power, where ASE noise power is twice the non-
linear noise power. Here the SNR curve is essentially flat with
respect to power, such that improvements in power accuracy do
not translate into significantly higher SNR accuracy. Conversely,
services for which power is far from NLT sustain a significant
SNR accuracy improvement with our technique. As an example,
we observed that over 3 OMS with up to 5 channels dropped,
the RMSE of the SNR prediction is improved from 2.6 to 1.8 dB
compared to the baseline when EDFA-ML is supplemented by
IR lumped losses (EDFA-ML +IRLL) and further from 1.8 to 0.9
dB, for EDFA-ML+IR for services in the highly linear regime
(power ∼3 dB above NLT). This is an improvement of more than
1.5 dB compared to the baseline. The maximum SNR error re-
duces from 3.5 dB (baseline) to 2.4 dB (EDFA-ML+IRLL) to 1.3
dB (EDFA-ML+IR). Over 2 OMS with up to 33 channels dropped,
the RMSE of SNR prediction is improved from 1.9 dB (baseline)
to 1.5dB (EDFA-ML+IRLL) to 0.9 dB (EDFA-ML+IR).

In Fig. 16a) we finally compare how the RMSE of EDFA-
ML+IRLL and EDFA-ML+IR increase with distance for this sce-
nario. As before, see Fig. 12a), the error of the cascaded ML
predictions of EDFA-ML+IRLL increases rapidly, much faster
than that of EDFA-ML+IR. For comparison we also plot the
accuracy that would be obtained using no prediction, i.e., by
assuming that power of the remaining services does not change
when services are dropped. One can see that the impact of a
change in the network increases exponentially and the slope is
comparable to that of the EDFA-ML+IR predictions. Fig. 16b)
shows that the error distributions of EDFA-ML+IR and for the
case of no prediction at the last amplifier are also comparable.
Since the offset of the curves in Fig. 16a) is similar, the prediction
error is of the order of the change to be predicted. By improving
the accuracy of the individual amplifier models, the error of the
cascaded predictions may also be improved.

6. CONCLUSIONS

We have presented a ML enhanced digital twin for QoT estima-
tion and QoT prediction in optical networks. Our QoT input
parameter refinement estimates the lumped loss distribution and
amplifier gain spectra in the current network state. We observed
significant improvements in QoT estimation accuracy compared
to the baseline, with a reduction of SNR estimation error by 0.3
down to 0.07 dB.

To enable our digital twin for QoT prediction, we designed
and trained novel neural network models for two types of am-

plifiers, which generalize over arbitrary nominal gain and tilt
settings and over different physical devices of the same type.
An RMSE of 0.35 dB was obtained for EDFAs of an OMS of a
deployed network after simulated offline factory training.

It turns out that error amplification from the cascaded pre-
dictions is the main limitation for obtaining high accuracy for
QoT prediction. We developed a method that significantly allevi-
ates error amplification through error cancellation. Per-channel
power prediction error (RMSE) after 5 cascaded amplifiers when
adding a single service was reduced from 2.47 dB for the baseline
down to 0.35 dB for the new method. For removal of multiple
services in a simulated fiber cut, the RMSE after 12 amplifiers
was reduced by as much as 4 dB compared to the baseline, lead-
ing to an improvement in SNR prediction accuracy by 0.5 dB on
average and by more than 2 dB for services far from nonlinear
threshold.

While being significantly more accurate than straightforward
cascaded predictions, the error remained comparable to the
changes to be predicted for all distances. Prediction accuracy of
the cascaded predictions is expected to be improved by further
reducing the error of the individual EDFA model predictions.
It remains to be seen if the correlations in predictions errors
that lead to their cancellation hold over links even longer than
our setup. Individual prediction errors may be reduced [25] by
better matching the training and test distributions, in particular
by extending the training data dynamic range, better controlling
for experimental uncertainties or by using alternative modeling
approaches which combine machine learning methods with the
device physics [26]. Transfer learning techniques may prove
useful to improve model accuracy for limited training data or
reduce the overhead of offline factory training.

A benefit of the modular nature of our digital twin is that
amplifier models can be trained offline to update the twin when
a device is replaced. We have further shown that using input re-
finement, the lumped losses and gain spectra for QoT estimation
can be updated using conventionally monitored information in
the current network state. Since parameters of fibers, filters and
other passive devices of our digital twin can be inferred from
datasheets, the model can be updated using input refinement
without requiring online data acquisition that would otherwise
impact network operation.
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