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Analytical models for Quality of Transmission (QoT) estimation require safety design margins to account
for uncertain knowledge of input parameters. We propose and evaluate a design procedure that gradually
decreases these margins in presence of multiple physical layer uncertainties (namely, connector loss, EDFA
gain ripple and fiber type) by leveraging monitoring data to build a probabilistic Machine-Learning-based
QoT regressor. We evaluate the savings from margin reduction in terms of occupied spectrum and number
of installed transponders in C and C+L band and demonstrate that (4-12)% transponder/spectrum savings
can be achieved in realistic network instances by simply leveraging SNR monitored at receivers and paying
off a low increment in lightpath disruption probability (at most 1-4%). © 2023 Optica Publishing Group
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1. INTRODUCTION

Signals in optical networks are affected by various impairments
that impose a maximum transmission distance or, more pre-
cisely, a minimum Quality of Transmission (QoT) (e.g., Signal to
Noise Ratio, SNR or Bit Error Rate, BER) for each Modulation
Format (MF). Reliable QoT estimators are essential to predict the
QoT of unestablished lightpaths during network planning and
configure the appropriate MF. Existing analytical QoT models
account for major impairments, such as nonlinear interference
(NLI) [1], amplified spontaneous emission (ASE) noise and op-
tical filtering [2]. They achieve high accuracy, assuming exact
knowledge of physical-layer (PL) parameters. However, in real-
life, PL parameters such as the EDFA gain ripple, connector loss
and, sometimes, even the fiber type are not known precisely,
so safety (design) margins [3] are imposed to guarantee that
the MF configured based on predicted QoT is operable in the
field deployment, and the correct number of transponders is
installed to satisfy traffic requests. The extent of design margins
depends on the available information about the network, its
size and available monitoring capabilities, but, to account for
the worst-case deviation of the predicted vs. the actual SNR, in
presence of multiple PL uncertainties, they can easily reach up
to (2-3) dB in core networks [4], leading to significant resource
under-utilization.

Notable research effort has been recently dedicated to low-
ering design margins and effectively utilizing resources. One
approach, called “input refinement”, uses monitoring informa-
tion from optical-network devices to estimate the precise values

of PL parameters and fine-tune the accuracy of the analytical
QoT models by removing uncertainties regarding its inputs. For
example, Ref. [5] shows how to estimate EDFA noise figure (NF)
and output power profile by minimizing difference between
predicted and measured SNR using gradient descent. Similarly,
Ref. [6] estimates input/output lumped losses and EDFA gain
profile at each span by minimizing the difference between pre-
dicted and measured power spectrum at the optical nodes and
total input/output power at each in-line amplifier. Ref. [7] uses
an evolutionary metaheuristic to find the values of connector
losses, fiber attenuation coefficient and coefficient characterizing
Raman power transfer that minimize the difference between
predicted and measured power spectrum in each span.

Another approach to lowering design margins, that we define
as “Machine Learning (ML)-based end-to-end QoT modelling”
uses QoT measurements of already established lightpaths to
learn the effects of PL impairments without learning the values
of distinct parameters. This can be done directly, by predicting
the QoT value, as in [8, 9], or by predicting QoT penalties, as in
[10]. However, extrapolation of learnt effects to the new paths
and frequency channels is not precise, and, to account for the
uncertainty, ML models can be trained to predict not the mean
QoT value, but its distribution (we refer to this approach as
“Probabilistic QoT estimation”. Knowing the QoT distribution,
one can decide to set conservative (high) or aggressive (low)
design margins, based on the desired tolerance to lightpath
having an unfeasible MF configuration.

Probabilistic QoT estimation has so far been predominantly
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Fig. 1. (a) Optical span including an amplifier, a fiber and
input/output lumped loss (b) Examples of design and field
values of the uncertain physical-layer parameters

applied to learn dynamic QoT variation (e.g., due to Polarization
Dependent Loss, PDL) and decrease system margin [3]. Authors
in [11] consider both random QoT penalty (system margin) and
uncertainty in amplifier noise figure (design margin) and com-
pare multiple approaches for parametric and non-parametric
estimation of SNR distribution in terms of probability of con-
figuring inappropriate MF. In [12] authors consider uncertainty
due to random QoT fluctuations, estimate Q-factor distribution
using quantile regression and Bayesian Neural Networks and
demonstrate how probabilistic QoT estimations reduce block-
ing probability. In [13] authors also consider uncertainty due
to random QoT fluctuations and use ML to predict parameters
of a Gaussian distribution, but then perform “calibration” to
better fit the true probability distribution. In [14] ML is used
to predict the distribution of PDL for distinct devices along the
optical signal path.

Differently, in this work we consider multiple “static” PL
uncertainties (amplifier gain ripple, connector losses and fiber
types) and follow a hybrid approach: we estimate SNR values
analytically and use ML to predict a distribution of deviation
of the analytical SNR from the SNR value in the field (i.e., the
design margin) for the unestablished lightpath. This deviation is
theoretically deterministic (in presence of sufficient monitoring
information), but, because of the limited monitoring informa-
tion, it is characterized by a statistical distribution, i.e., it can
only be predicted with an unavoidable uncertainty due to the
lack of knowledge about its actual value. This lack of moni-
toring information represents an issue especially at the early
phase of network deployment. During the lifespan of the net-
work, as we provision more services and learn more about the
PL uncertainties from QoT monitoring, the distribution of the
difference between model and field SNR shrinks and tends to a
single value.

So, in this study, we incorporate the probabilistic ML QoT re-
gressor into a resource allocation procedure, so that safety design
margins are lowered to save spectrum and optical transponders.
In [15] we predicted different quantiles of the design margin
distribution and showed that, with this approach, (5-8)% less
spectrum and transponders can be used in realistic network in-
stances by simply leveraging SNR monitored at receivers, and
paying off a very low increment in lightpath disruption prob-
ability (1-2%). In this study, we extend the work in [15] by

performing our evaluations also in the C+L-band scenario and
by introducing the adaptive quantile selection procedure to set
the design margin.

The remainder of this paper is organized as follows. In Sec-
tion 2 we describe QoT modelling with multiple uncertain PL pa-
rameters. In Section 3 we introduce the investigated low-margin
design scenarios: baseline scenario with worst-case design mar-
gin, two scenarios that apply ML to monitoring information
to predict either the mean value of the design margin or the
distribution of the design margin (proposed approach) and two
upper-bound scenarios with partial or full knowledge of PL pa-
rameters and no design margin. In Section 4 we describe the
proposed ML-based probabilistic QoT-estimator and its integra-
tion into the resource allocation heuristic. In Section 5 we specify
network and traffic assumptions and present numerical results.
In Section 6 we summarize the results and discuss future work.

2. MODELLING ASSUMPTIONS

SNR at the receiver depends on the noise accumulated in op-
tical spans along the path. Each span is composed of a fiber
and an Erbium-Doped Fiber Amplifier (EDFA) (see Fig. 1a), that
introduce NLI and ASE noise, respectively. The EDFA is char-
acterized by average gain (G), gain tilt (T), noise figure (F) and
output power (Pout), while the fiber is characterized by nonlinear
coefficient (η) and wavelength-dependent loss (WDL) (ρ), both
including Raman effects. Optical connectors between EDFA and
fiber are modelled as input (δ) and output (δ‘) lumped losses.

Uncertainties in parameter values in this work (see Fig. 1b)
are due to 1) unaccounted losses in optical connectors, e.g., com-
ing from dust and dirt [16], 2) non-flatness of EDFA gain profile
(i.e., gain ripple), and 3) wrong fiber type specifications, due to,
e.g., inventory problems [17]. Uncertain knowledge of PL param-
eters results in two main shortcomings, i.e., powers launched
into the span are set suboptimally, and analytical QoT estimation
is inaccurate.

For the power setting, we assume that power profile at the
output of a WSS (before the booster amplifier) is flat and use
Locally-Optimized Globally-Optimized (LOGO) strategy [1] to
find an optimal trade-off between ASE and NLI noise in every
fiber span and set Pin at each span (or, equivalently, Pout at the
previous span) along the path to achieve the highest SNR at
the receiver. Incorrect values of PL parameters lead to incorrect
estimations of ASE and NLI noise, and, in turn, suboptimal
powers and lower SNR at the receiver. For instance, difference
in the optimal power when equivocating two fiber types is in
the order of multiple dB (e.g., 3.3 dBm for SMF and -0.3 dBm for
LEAF fiber for a 80 km long span and 100 GHz channels). We
also consider power equalizers placed every 5 spans along the
link to reduce the effect of gain ripple.

For QoT estimation, by using incorrect PL parameter values
in GN-model [1], we obtain analytical SNR estimations different
from SNR that is measured at the receiver.

Focusing on the PL parameters defined above, let us now
overview the difference between design values used in analytical
models and field values in network devices (see Fig. 1b):

• connector losses: field values of δ and δ‘ are typically higher
than design ones due to contamination,

• EDFA ripple: design gain profile is assumed to be flat, while
field gain profile is affected by gain ripple,

• fiber parameters: if an incorrect fiber type is specified in the
inventory, design and field values for η and ρ are different.
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Ideal SNR profiles for a 80 km fiber span (c) Simulated scenarios with corresponding SNR data (d) Incorrect margin estimation can
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Note that incorrect knowledge of fiber type and connector
losses leads to the suboptimal configuration of EDFAs parame-
ters, namely, average gain (G) and gain tilt (T). We will discuss
this in details in the next section. Note also that we assume
design and field values of noise figure (F) to be equal, constant,
and independent from the gain.

3. EMULATED SNR CALCULATION AND LOW-MARGIN
DESIGN SCENARIOS

A. Emulated SNR Calculation
Fig. 2a describes the three types of emulated SNR (Model, Field
and Ideal) used in this work. We distinguish between field
values of PL parameters being known by operator (i.e., operator
can set optimal power) and being used to calculate SNR (to
emulate SNR measured in the field).

• SNRModel is the SNR predicted with the analytical model
and available at network design stage. It is calculated using
design values of PL parameters. As described in Fig. 2a,
EDFA gain G is set to compensate for propagation loss in
the specified fiber type, for design connector losses, and to
reach Pout computed by LOGO model using design values.
EDFA tilt T is set to compensate for design value of ρ.

• SNRField is the SNR actually measured in the field. In this
work we emulate SNRField using the field values of PL
parameters. EDFA gain G is set to compensate for actual
field loss, as EDFA can auto-tune its gain, so that EDFA still
reaches Pout that was computed with design values (as field
values of the PL parameters are not known to the operator),
and that is suboptimal in the field. Differently from G, tilt
T cannot be monitored at every span, so it is always set
to compensate for design value of ρ. Suboptimal power

setting and tilt configuration together with our assumption
that loss in the field is always higher than in the model
leads to SNRField < SNRModel .

• SNRIdeal is the SNR that could ideally be achieved in the
field if all field parameter values were perfectly known
beforehand, and it is calculated using the field values of
PL parameters and optimal tilt and power setting (hence
SNRIdeal > SNRField).

Fig. 2b shows an example of Model, Field and Ideal SNR profiles
over a single 80 km long span (numerical values of used PL
parameters are specified in Section 5).

B. Low-margin Design Scenarios
We use the three types of emulated SNR described above to
simulate one baseline and four low-margin design scenarios,
as shown in Fig. 2c. In current practice SNRModel is used to
set modulation format, and since it is overestimated, a safety
margin M is imposed, such that SNRModel − M ≤ SNRField.

• Baseline scenario uses a worst-case margin MWorst. This is
the state-of-the-art design approach that does not make use
of monitoring data.

• Mean scenario applies Machine Learning to monitoring
data to predict a mean value of the design margin: MML <
MWorst. This is the design approach that has been recently
adopted in research.

• Probabilistic scenario also applies Machine Learning to
monitoring data, but to predict a distribution of design
margin and choose MML < MWorst. This is the novel design
approach that we investigate in this work.
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• Field scenario assumes that QoT estimations are perfect,
and uses SNRField to set the MF without safety margins.
This scenario provides an upper bound on resource savings
in any design approach that leverages monitoring data to
improve SNR prediction.

• Ideal scenario assumes that field values of PL parameters
are known, and MF is set using SNRIdeal without safety
margins. This scenario provides an upper bound on re-
source savings in case “input refinement” is used.1

4. METHODOLOGY

To evaluate network resource savings in different low-margin de-
sign scenarios, we integrate them with the Routing, Modulation
format selection and Spectrum Allocation (RMSA) procedure.

A. Integration of Probabilistic ML-based QoT Estimator with
RMSA Procedure

We provision traffic requests using k-Shortest-Path routing and
First-Fit spectrum allocation. To obtain the training dataset for
ML-based QoT estimation we configure modulation formats
of the first N lightpaths in the network based on SNRModel −
MWorst. To estimate a single network-wide value of MWorst,
we use a Monte-Carlo approach and test a large number of
random gain ripple profiles, connector loss values and fiber
type assignments (numerical values of used PL parameters are
specified in Section 5) to find the worst-case value of ∆SNR =
SNRModel − SNRField across different paths.

Fig. 4 demonstrates how we integrate ML-based QoT estima-
tor in Probabilistic design scenario with the RMSA procedure.
After the first N lightpaths are deployed, we use N values of
measured SNRField to train a ML regressor predict the distribu-
tion of ∆SNR. Knowing the distribution, we choose a single
value MML = ∆SNR as a margin for the next lightpaths instead
of MWorst. By choosing different values from the same distribu-
tion, we can set conservative (high) or aggressive (low) design
margin. We retrain the regressor on all available data after N
new lightpaths are established.

1Note that “input refinement” can address both suboptimal power and inac-
curate QoT prediction, and can potentially achieve performance of Ideal scenario,
while “ML-based QoT estimation” only decreases margins by making better QoT
predictions and is limited by the performance of Field scenario.

Note that if the estimated MML is too small, and MF config-
ured based on SNRModel − MML is below FEC threshold, we call
it a disruption and reconfigure the transponder with a lower MF,
if possible, or reroute the lightpath. Another lightpath is then es-
tablished to fully satisfy the traffic request. Incorrect estimation
of MML leads to a disruption or inefficient resource utilization
only when requested bitrate is high enough, and transponder
must operate close to capacity. However, in our evaluations we
also account for all potential cases of MF “overrating” (when
highest MF that can be configured with SNRModel − MML is not
feasible with SNRField) and “underrating” (when higher MF can
be configured with SNRField than with SNRModel − MML) (see
an example in Fig. 2d).

B. Probabilistic ML-based QoT Estimator based on Quantile
Regression

The logic of the probabilistic QoT estimator is illustrated in
Fig. 3. We predict ∆SNR per path, and feature vector encodes it
as following: links of the path are represented by 1s, remaining
network links - by 0s. In other words, we learn the contribution
of each link uncertainties to ∆SNR at the receiver to predict it
for new paths. To estimate the distribution of ∆SNR, we use a
weighted loss function (known as quantile or pinball loss [18])
and penalize under- or over-estimations for a conservative (high)
or aggressive (low) margin prediction, respectively. Note that as
more monitoring data becomes available, per-path distribution
of ∆SNR shrinks and accounts only for randomness caused by
gain ripple.

Differently, in the Mean design scenario ML-based estimator
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MML

Maggressive

Mconservative

Analytical
QoT model

Probabilistic
QoT estimator

Training

SNRField

Fig. 4. Proposed probabilistic QoT estimator integrated into
Routing, Modulation format selection and Spectrum Alloca-
tion (RMSA) procedure
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is trained to predict only the mean of SNRModel − SNRField by
minimizing mean squared error.

We also propose an adaptive quantile selection procedure to
choose the quantile that leads to the optimal MF. We keep a score
for each quantile and choose the quantile with the highest score
as the margin for the new lightpath. Scores are initialized on the
first N lightpaths by adding 1 if MF is set optimally, and subtract-
ing 1 in case of over- or underrating, and are updated after every
provisioned lightpath. We have tested different reward/penalty
values and found these to perform best.

5. ILLUSTRATIVE NUMERICAL RESULTS

We perform our numerical evaluations on two realistic topolo-
gies, a 17-node German network (GE17) and 19-node European
network (EU19) (Fig. 5) [19]. Results are averaged considering
20 traffic matrices with bidirectional data rate requests randomly
distributed between 200 Gb/s and 1000 Gb/s with 100 Gb/s
step. We consider mesh traffic matrices, where 70% of random
node pairs exchange traffic. Traffic is provisioned by 90 Gbaud
transponders capable of 300-800 Gbit/s with 20 dB back-to-back
SNR and SNR thresholds from [20] with a 1 dB system margin.

Established lightpaths are not affected by QoT degradation
(e.g., due to aging), as in this work we focus on reducing the
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Fig. 6. Distribution of EDFA gain ripple

design margins arising from uncertainties in the knowledge of
physical-layer parameters and not margins corresponding to
other effects.

In C-band scenario we operate in a 6 THz band, while in C+L
scenario we consider 10 THz available and allocate spectrum
starting from the L-band. We increase traffic by 65% (by increas-
ing the probability of high bitrates) to match 66% increase in
available spectrum. We assume that EDFAs are placed every 80
km and consider F equal to 5 dB in C-band EDFAs and to 6 dB
in L-band EDFAs. We use Generalized Gaussian Noise model
[21] to estimate NLI and assume ASE-loading (i.e., spectrum is
always fully loaded, and EDFA ripple profiles do not change) in
both C- and C+L-scenarios.

Connector losses are 0.5 dB in the design and are uniformly
distributed in [0.5; 1.5] dB in the field. 75% of fiber spans are
SMF, while 25% are LEAF fibers. We assume that 20% of spans
have incorrect fiber type specified at design stage. For each field
EDFA we randomly select one of 18 ripple profiles measured on
testbed amplifiers. Ripple distribution is shown in Fig. 6. We
consider MWorst = 2 dB in GE17 and MWorst = 2.5 dB in EU19.

We use MWorst for the first N = 50 lightpaths, then start es-
timating MML and retrain the ML model every 50 established
lightpaths after that. Training dataset reaches up to 250 (400)
samples in the GE17 (EU19) networks. Input vector of the ML
regressor contains 104 (152) binary elements (each link in 2 di-
rections) in the GE17 (EU19) networks.

We compare four low-margin design scenarios defined in
Section 3B: i) Probabilistic scenario that estimates 5 quantiles of
∆SNR (1st, 25th, 50th, 75th or 99th quantile, where small and
large quantiles correspond to conservative and aggressive MML
estimations, respectively) and either always considers the same
quantile as MML (e.g., always the 1st) or chooses one out of five
using adaptive quantile selection procedure, ii) a Mean scenario
that estimates the mean of ∆SNR, iii) a Field scenario, and iv)
an Ideal scenarios w.r.t. Baseline scenario that uses MWorst.

We present the results in terms of savings in occupied spec-
trum slots (SO) and number of deployed transponders (TRX), in
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Table 1. Savings in Spectrum Occupation (SO) and number of Transponders (TRX), and probability of disruption w.r.t. Baseline
scenario with MWorst = 2.0 dB in GE17 in C-band

Savings (%) in SO Savings (%) in TRX Prob. (%) of disruption

Algorithm LR DNN RF GBT LR DNN RF GBT LR DNN RF GBT

Mean 6.2 6.3 6.6 6.5 5.6 5.7 5.9 5.8 0.2 0.2 0.1 0.1

Proposed

25 q. 6.1 6.1 6.4 6.4 5.4 5.5 5.7 5.7 0.1 0.2 0.1 0.04

50 q. 6.6 6.5 6.6 6.5 5.9 5.9 5.9 5.9 0.1 0.2 0.1 0.1

75 q. 6.8 6.8 6.7 6.7 6.0 6.0 5.9 5.9 0.3 0.3 0.2 0.1

Table 2. Savings in Spectrum Occupation (SO) and number of Transponders (TRX), decrease in Residual Capacity (RC) and proba-
bility of disruption, potential overrating and underrating w.r.t. Baseline scenario with MWorst in GE17 (EU19)

(a) C-band. Uncertainty in connector losses, EDFA gain ripple and fiber types. MWorst = 2.0 (2.5) dB

Savings (%) in Decrease (%) in Probability (%) of

Scenario SO TRX RC Disruption Overrating Underrating

Worst-case baseline - - - 0 0 89.9 (98.6)

Proposed

1 q. 5.8 (7.6) 5.4 (7.3) 2.6 (14.4) 0.1 (0.1) 0.4 (0.8) 33.8 (46.4)

25 q. 6.3 (7.9) 5.7 (7.6) 3.3 (17.7) 0.1 (0.8) 1.1 (2.9) 25.2 (33.0)

50 q. 6.4 (8.1) 5.8 (7.8) 3.4 (17.7) 0.3 (0.6) 2.0 (3.1) 24.4 (31.2)

75 q. 6.5 (8.1) 5.9 (7.8) 3.5 (18.7) 0.2 (1.0) 2.6 (4.2) 22.8 (28.7)

99 q. 6.6 (8.4) 6.0 (8.2) 4.6 (20.7) 1.0 (2.6) 8.5 (9.5) 20.9 (21.4)

Adaptive q. 6.8 (7.8) 6.0 (7.6) 3.0 (19.3) 0.1 (0.8) 2.6 (3.8) 24.1 (29.0)

Mean 6.4 (8.0) 5.8 (7.7) 3.4 (18.3) 0.3 (0.7) 2.2 (3.3) 23.9 (30.7)

Upper

bound

Field 7.8 (9.8) 7.4 (9.4) 4.2 (23.7) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

Ideal 8.8 (12.0) 8.4 (11.6) 4.6 (28.8) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

(b) C-band. Uncertainty in connector losses and EDFA gain ripple. Known fiber types. MWorst = 1.5 (2.0) dB

Savings (%) in Decrease (%) in Probability (%) of

Scenario SO TRX RC Disruption Overrating Underrating

Worst-case baseline - - - 0 0 80.4 (98.6)

Probabilistic

1 q. 2.7 (4.1) 2.5 (3.8) 4.0 (15.3) 0.0 (0.3) 0.5 (1.3) 30.6 (40.4)

25 q. 3.6 (4.3) 3.2 (4.1) 3.9 (17.6) 0.1 (0.7) 2.0 (3.4) 22.7 (30.8)

50 q. 3.6 (4.5) 3.2 (4.3) 4.1 (17.8) 0.2 (0.9) 2.3 (3.7) 21.6 (27.2)

75 q. 3.6 (4.7) 3.2 (4.4) 4.4 (18.2) 0.2 (1.2) 2.6 (5.2) 20.2 (25.8)

99 q. 3.6 (4.8) 3.2 (4.6) 6.0 (20.9) 0.4 (3.5) 10.3 (13.3) 18.9 (19.4)

Adaptive q. 3.6 (4.5) 3.2 (4.3) 4.2 (18.2) 0.1 (0.9) 2.5 (3.7) 21.5 (26.9)

Mean 3.6 (4.6) 3.2 (4.3) 4.2 (18.0) 0.1 (0.8) 2.3 (4.3) 21.1 (27.4)

Upper

bound

Field 5.1 (5.8) 5.0 (5.5) 2.6 (21.7) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

Ideal 5.7 (7.1) 5.7 (6.9) 2.5 (23.8) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

terms of decrease in residual capacity (in Gbit/s) of the deployed
transponders (RC) and in terms of % of disrupted, potentially
overrated and underrated lightpaths.

A. ML-model Selection

In Table 1 we show average savings in GE17 topology (C-band
and MWorst = 2 dB) for the state-of-the-art mean estimator and
the proposed estimator of 25/50/75th quantiles, while using
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Table 3. Savings in Spectrum Occupation (SO) and number of Transponders (TRX), decrease in Residual Capacity (RC) and proba-
bility of disruption, potential overrating and underrating w.r.t. Baseline scenario with MWorst in GE17 (EU19) in C+L-band

Savings (%) in Decrease (%) in Probability (%) of

Scenario SO TRX RC Disruption Overrating Underrating

Worst-case baseline - - - 0 0 94.8 (99.6)

Probabilistic

1 q. 4.3 (10.9) 5.1 (9.7) 6.9 (23.0) 0.5 (1.2) 1.0 (2.1) 29.8 (40.1)

25 q. 4.7 (11.4) 5.7 (10.2) 6.9 (25.6) 0.9 (2.6) 2.2 (4.8) 21.4 (29.8)

50 q. 4.6 (11.8) 5.6 (10.6) 7.6 (26.3) 1.3 (3.0) 3.2 (5.9) 21.1 (25.6)

75 q. 4.8 (12.0) 5.8 (10.7) 7.5 (27.0) 1.6 (4.0) 4.2 (8.0) 18.8 (23.6)

99 q. 4.9 (12.2) 5.9 (10.9) 9.3 (31.6) 4.6 (6.5) 11.9 (14.1) 14.7 (16.2)

Adaptive q. 4.8 (11.7) 5.7 (10.5) 7.3 (26.4) 0.7 (2.7) 3.2 (5.9) 20.2 (26.1)

Mean 4.7 (11.5) 5.7 (10.4) 7.3 (26.4) 1.2 (3.4) 3.3 (6.7) 20.8 (27.6)

Upper

bound

Field 5.2 (13.5) 6.1 (12.1) 11.9 (31.9) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

Ideal 5.6 (17.0) 6.6 (15.1) 14.3 (36.5) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

Linear Regression (LR), Deep Neural Network (DNN), Random
Forest (RF) and Gradient Boosted Trees (GBT).

Results show negligible variations in savings for different
ML algorithms in the order of tenths of %. RF and GBT allow
more savings than LR and NN for the mean and 25th quantile,
while guaranteeing lower probability of disruption. For 50th
and 75th quantiles LR and NN save 0.1-0.2% more, but at the
cost of higher disruption probability. For the following results
we will consider GBT regressor as a ML model, as it guarantees
highest savings and lowest disruption probability.

Mean 25 q. 50 q. 75 q.
Estimated value
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Fig. 7. Average loss on the training and testing datasets

To verify that the regression algorithm does not over- or
underfit, in Fig. 7 we plot the loss of the GBT regressor (mean
square error for the mean estimator and pinball loss for the
quantile estimator) on the training and testing datasets. We can
see that the error is lower for the training dataset (suggesting
that there is no underfitting), while it still remains low for the
testing dataset (suggesting that there is no overfitting).

B. C-band. Uncertain connector losses, EDFA gain ripple and
fiber type

Results in Table 2a show that by using conservative, but not
worst-case margins (1st quantile) we can save 5.8 (7.6)% in SO,
5.4 (7.3)% in TRX while losing 2.6 (14.4)% in RC with only 0.1
(0.1)% of disrupted and 0.4 (0.8)% of potentially overrated light-
paths in GE17 (EU19) networks. % of potentially underrated
lightpaths decreases from 89.9 (98.6)% to 33.8 (46.4)% in GE17

(EU19). As we use more aggressive estimations (higher quan-
tiles), savings increase and eventually reach 6.6 (8.4)% in SO
and 6.0 (8.2)% in TRX with 99th quantile estimations, while RC
decreases by 4.6 (20.7)% and 1.0 (2.6)% of lightpaths are dis-
rupted in GE17 (EU19). % of potentially underrated lightpaths
is lower-bounded by 18.5 (14.3)%, as the first 50 lightpaths are
provisioned with worst-case margins, and by using the 99th
quantile estimations we arrive close to this lower bound with
20.9 (21.4)% of potentially underrated lightpaths in GE17 (EU19).

Adaptive quantile selection procedure enables further sav-
ings in GE17, 6.8% in SO and 6.0% in TRX with 0.1% of disrupted
lightpaths. In EU19 it closely follows the performance of the
median and provides no advantage. Mean scenario performs
similarly to the scenario that uses median estimation. These
results demonstrate the advantage of the Probabilistic QoT esti-
mation approach that is capable of trading savings in network
resources with probability of disruption, while Mean scenario
does not have this degree of freedom.

Perfectly accurate QoT estimation in Field scenario can po-
tentially save 7.8 (9.8)% in SO and 7.4 (9.4)% in TRX with a 4.2
(23.7)% decrease in RC, meaning that with aggressive margin
estimations we are just a few % from the field optimum. If we
could also set powers and tilts optimally in Ideal scenario we can
save 8.8 (12.0)% in SO and 8.4 (11.6)% in TRX with a 4.6 (28.8)%
decrease in RC.

C. C-band. Uncertain connector losses and EDFA gain ripple
We repeat the same analysis considering that inventory human-
errors do not happen, and fiber types are always known, and
worst-case margins reduce by 0.5 dB to MWorst = 1.5 dB for
the GE17 and MWorst = 2.0 dB for EU19. Results in Table 2b
show that we can save only 2.7 (4.1)% in SO and 2.5 (3.8)% in
TRX with 0.0 (0.3)% of disrupted and 0.5 (1.3)% of potentially
overrated lightpaths when using the 1st quantile estimation.
Savings increase by approximately 1% with the 99th quantile
estimation and reach 3.6 (4.8)% in SO and 3.2 (4.6)% in TRX,
while probability of disruption increases to 0.4 (3.5)%. We see
that in GE17 savings in both SO and TRX remain constant for
a wide range of quantiles. This can be explained by the fact
that when small margins are used, difference in dB between
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two quantile estimations is too small to change MF assignment.
Both adaptive quantile selection and Mean margin estimations
closely follow the performance of the scenario that uses median
estimation. Perfectly accurate QoT estimation in Field scenario
can save 5.1 (5.8)% in SO and 5.0 (5.5)% in TRX, and with optimal
settings of gains and tilts in Ideal scenario we can save 5.7 (7.1)%
in SO and 5.7 (6.9)% in TRX.

D. C+L-band. Uncertain connector losses, EDFA gain ripple
and fiber type

We then repeat the analysis for the 10 THz C+L-band scenario.
We keep MWorst = 2 dB for the GE17 and MWorst = 2.5 dB for
EU19. Results in Table 3 show that by using the 1st quantile esti-
mation we can save 4.3 (10.9)% in SO, 5.1 (9.7)% in TRX with 0.5
(1.2)% of disrupted and 1.0 (2.1)% of potentially overrated light-
paths. Underrating decreases from 94.8 (99.6)% to 29.8 (40.1)%.
Savings increase with smaller margins (higher quantiles) and
reach 4.9 (12.2)% in SO and 5.9 (10.9)% in TRX with 4.6 (6.5)% of
disruptions. In EU19 savings increase significantly w.r.t. C-band
scenario, as paths are long enough to make high-order MFs (re-
quired to carry increased bitrates) unfeasible with worst-case
margins, so that more lightpaths can benefit from lower margins
compared to GE17. Adaptive quantile selection achieves similar
performance to the case when 50th quantile estimation is used,
but decreases probability of disruption by 0.5 (0.3)%. In Mean
scenario performance is similar to the median estimation. % of
disrupted and overrated lightpaths increases by a couple of %
w.r.t. C-band scenario, emphasizing the benefits of the resource
savings vs. disruption probability trade-off. Perfectly accurate
QoT estimation in Field scenario allow to save 5.2 (13.5)% in SO
and 6.1 (12.1)% in TRX, and optimal settings of gains and tilts in
Field scenario provide 5.6 (17.0)% savings in SO and 6.6 (15.1)%
in TRX.

6. CONCLUSION

Considering 3 practical sources of uncertainty at the physical
layer (connector losses, EDFA gain ripple and fiber types), we
identified 4 low-margin design scenarios that allow to numeri-
cally evaluate the gain from improved knowledge of physical-
layer behaviour. We demonstrate how a probabilistic ML re-
gressor can be integrated into resource allocation heuristic to
set lower design margins and save (4-12)% of spectrum and
transponders in C- and C+L-band scenarios at a cost of a small
probability of lightpath disruption (at most 1-4%).

Considering high cost and energy consumption of transpon-
ders [22], proposed approach noticeably reduces optical net-
work deployment cost, while only using monitoring data al-
ready available at the receivers (in other words, our proposed
solution does not require any additional capital expenditure for
monitoring). Note that different optimization strategies that
lead to a flat SNR profile can make the proposed approach less
effective, but they will require a precise knowledge of physical
layer parameters.

As future work, we aim at improving adaptive quantile se-
lection procedure to choose the best quantile based on lightpath
features and also at improving the accuracy of the proposed
probabilistic QoT estimation approach in multi-band scenarios.
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