
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract— Today’s network infrastructure evolves into two

seemingly opposite directions: cloudification centralizes functions
that used to be distributed for economies of scale, at the expense of
latency, while latency-constrained applications are surging. this
calls for a new architecture capable of distributed computing: The
Edge Cloud network. Future 5G applications will impose strict
latency and dynamicity requirements on the Edge Cloud, in
intra- and inter-data center networks. The Edge Cloud needs a
network infrastructure able to deliver: low latency
(~microseconds), deterministic data delivery in time
(~nanoseconds jitter) and dynamic reconfiguration
(~milliseconds) between objects (antennas, robots) in data centers
or across data centers, through a fronthaul network.

 In this paper we propose, implement and demonstrate
Deterministic Dynamic Network (DDN)-based Edge Cloud
network. On a real-time testbed we achieve network slicing, low,
deterministic latency of only tens of microseconds per-application
(per-flow), when competing technologies cannot provide per-flow
guarantee. We also show that the network can be dynamically
reconfigured at the millisecond timescale.

Index Terms— Time slot network, deterministic network, edge
cloud, data center, 5G, industry 4.0, latency, jitter, end-to-end
performance, quality of service guarantee, slicing.

I. INTRODUCTION

dge Cloud is a network architecture [1] based on distributed

Data Centers (Fig. 1), where raw time-sensitive data is sent,
through an optical network infrastructure, from endpoints (e.g.,
antennas, sensors, users) to the closest data center to be
processed. The Edge Cloud came as an evolution of the

17 December 2018.

This is an extended version of the ECOC’18 post-deadline paper “DDN:
Deterministic Dynamic Networks” [27].

Centralized Cloud network. The initial motivation to adopt a
Centralized Cloud architecture was to reduce costs by sharing
the processing hardware among multiple endpoints. Centralized
Cloud was originally proposed as an infrastructure for the
Centralized Radio Access Network (CRAN) [2] where mobile
user data processing functions are virtualized and moved from
the antenna to a centralized data center. However, long
propagation time on the optical fronthaul link – between the
antenna and the data center – that led to increased latency,
motivated the move towards a decentralized solution – the Edge
Cloud.
By bringing a pool of processing resources where the traffic is –
closer to the user (e.g., human, machine) – the Edge Cloud
architecture offers the opportunity to cost-effectively support
ultra-low latency and dense traffic demand. This architecture
opened a real opportunity to the Internet of Things (IoT) to
expand its use cases from non-real-time communication
between static objects (e.g., printer, sensors) to the support of
massive, dynamic, time-sensitive 5G applications such as:

• 5G RAN with mobile objects [3]
• Industry 4.0 [4] with collaborating machines
• Vehicle-to-everything communications with

self-driving cooperative cars and road traffic
regulation [4]

• Health sector with remote surgery intervention [6]
• high-frequency trading [7].

The conjuncture of the Edge Cloud architecture, the Internet of
Things and 5G applications in general is transforming the
telecommunications landscape from a user-to-user or user-to-

N. Benzaoui, M. Szczerban Gonzalez, J.-M. Estarán, H. Mardoyan,
Y. Pointurier and S. Bigo, are with Nokia Bell Labs, Nozay, France, (email:
nihel_djoher.benzaoui@nokia-bell-labs.com)

W. Lautenschlaeger, U. Gebhard, and L. Dembeck are with Nokia Bell Labs,
Stuttgart, Germany.

Deterministic Dynamic Networks (DDN)
N. Benzaoui, M. Szczerban Gonzalez, J. M. Estarán, H. Mardoyan, W. Lautenschlaeger,

U. Gebhard, L. Dembeck, S. Bigo, Y. Pointurier

E

Fig. 1. Edge Cloud architecture network. Fig. 2 Deterministic and Dynamic Network-based Edge Cloud network

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

object, to an object-to-object communication paradigm.
In such a vision, any object can request an IT service with any
other distant object, to potentially exchange data for a very short
time (sub-second). This new communication pattern increases
the time-dependence volatility (dynamicity) of the traffic
between the data centers. We expect traffic dynamics in the
fronthaul (inter-data center) to be similar to the one currently
governing intra-data center communications (70% of data
traffic lasts less than 500 milliseconds [8]). Hence, the service
turn-up time, that needs to be several orders of magnitude lower
than the service duration, is required to be sub-milliseconds.
Intrinsically to the time-sensitive nature of those 5G
applications, strict constraints on absolute latency and its
standard deviation – jitter – are put on the Edge Cloud network.
The latency requirements of already identified use cases is
today ranging from few hundreds of microseconds to tens of
milliseconds. As examples of latency and jitter requirements,
we give:

• 5G RAN: 100 microseconds latency [3][9]and below
100 nanoseconds jitter [10].

• Industry 4.0: less than 100 microseconds latency and
jitter from 30 nanoseconds to a few
microseconds [11][12].

• Vehicle-to-everything communications: 10 to
100 milliseconds [13].

We expect future applications to tend to take full advantage of
the Edge Cloud performance and stretch the latency at the
network limits, hence setting the latency constraint at few tens
of µs (propagation excluded). Consequently, the jitter – that
should be around one order of magnitude lower than latency –
should be set a sub-micro second value. In addition, for some
applications such as Industry 4.0, a high network reliability is
needed. Hence the network should provide a packet loss ratio
(PLR) below 10-10. This PLR target can be met using protocols
like TCP – based on packet retransmission in case of losses, but
at the expense of prohibitive latency and jitter incompatible
with Edge Cloud requirements.
Tab. 1 summarizes the characteristics and requirements
foreseen for the Edge Cloud. Based on the discussion in
previous paragraphs, we envision that future Edge Cloud
networks will need an infrastructure able to support both time-
sensitive and best effort traffic (a). This infrastructure has to
support dynamic traffic (b) and deliver very low latency (c),
jitter (d) and PLR (e). All this in a per-application (f) and end-
to-end fashion; from an object to another, potentially inside an
edge data center (g), and crossing the fronthaul or factory floor
network (h). Note that Tab. 1 gives estimates; exact values
depend on the application.

 The Edge Cloud network asks for a deterministic
(guaranteed latency and jitter) and dynamic infrastructure. But
most of the solutions proposed for future networks are still
relying either on technologies using inflexible, quasi-static
optical pipelines – unable to support highly dynamic traffic – or
on electronic technologies using transmission with no guarantee
of delivery – incompatible with the strict needs of 5G
applications in terms of quality of service.
This motivated us to propose a radical technological shift by
leveraging two time-slotted network technologies proposed by
Bell Labs, which altogether meet particularly well the
requirements of Edge Cloud networks: CBOSS and OE.
CBOSS [14], is an all-optical (no opto-electric conversions at
intermediate nodes) technology optimized for energy-greedy
environment, therefore, preferred for intra-data center
interconnection. OE [15] is a partially opaque technology
(transiting traffic is partially processed at intermediate nodes)
with low latency Forward Error Corrector (FEC), optimized for
long-reach transmission. OE has already been proposed for
metro networking and is positioned for Edge Cloud
fronthauling.

In this paper, and for the first time, we propose, implement
and demonstrate a combination of those two technologies
within an SDN-controlled environment.We demonstrate an
end-to-end Deterministic Dynamic Network (DDN)-based
Edge (Fig. 2) Cloud network. We show low latency of only tens
of microseconds (excluding propagation delay) and
sub-100 nanoseconds jitter per-application on a network that
can be dynamically reconfigured at the millisecond timescale.
 In the following we discuss the relevance of existing
technologies for the Edge cloud (Section II). We then present
Deterministic Dynamic Network (DDN), a new candidate for
Edge Cloud intra and inter edge data center network that can
deliver a per-flow performance guarantee in a very dynamic
fashion (Section III). We explain the mechanisms used to
provide such low and controlled latency in a dynamic
environment (Sections IV and V). We evaluate the performance
of DDN and compare it to the most promising transport solution
for the Edge Cloud in Section VI. Finally, in Section VII we
provide main conclusions.

II. FUTURE EDGE CLOUD SOLUTIONS

In the following we discuss the relevance of existing
solutions by evaluating their compliance with the foreseen Edge
Cloud characteristics and requirements listed on Tab. 1.

A. Optical circuit switched

Circuit switching, e.g., OTN in its most successful form,
whether paired with FlexE or not, has prevailed over years as
the natural technology to allow for deterministic performance,
especially in long haul networks. In OTN each service needs to
be allocated a dedicated a set of network resources. This hard
slicing has the benefit of isolating services from each other
without any risk of mutual influence. But the obligation of hard
slicing all services makes OTN fail criterion (a) of Tab. 1 since
no statistical multiplexing is possible. Also, OTN requires
heavy signaling for service turn-up, which results in service

TAB. 1: FUTURE EDGE CLOUD REQUIREMENTS AND CHARACTERISTICS
(a) Support of time-sensitiveness and statistical
multiplexing

Yes

(b) End-to-end service turn-up time <1 ms
(c) End-to-end latency (excluding propagation) 10’ s-100’s µs
(d) End-to-end jitter <1 µs
(e) End-to-end Packet loss rate << 10-10
(f) Number of competing time-sensitive flows >100
(g) Number of machines in each edge cloud ~200
(h) Typical end-to-end propagation distance ~1-50 km

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

turn-up times often well above the second-time scale,
consequently criterion (b) cannot be met.

B. Electrical packet switched

In a highly traffic dynamic environment, Ethernet is
undoubtedly the most successful implementation to cope with
dynamic traffic but suffers from unbounded jitter. At constant
load, average latency increases weakly when the number of
competing flows increases, but peak latency (hence, jitter)
grows rapidly. Large queueing delays may be rare events, but
they will happen owing to statistical multiplexing, irrespective
of network load; therefore, criterion (c), (d) and (e) of Table 1
cannot be met.

C. Optical and electrical TDM

Workaround approaches against the limitations of Ethernet
have been implemented to support the determinism of time-
sensitive traffic. They all rely on the introduction of time slots
of fixed duration. For example, in PON networks using fixed
bandwidth allocation (FBA), once connectivity is established,
deterministic performance can be delivered. But, when multiple
flows compete there is no guarantee when connectivity is
granted. Hence, PONs needs to work in a static bandwidth
allocation mode and consequently fail criterion (b). Industrial
Ethernet was specifically designed for time-sensitive industrial
applications but is not dynamically reconfigurable and can only
sustain a few flows over kilometer-long distances, therefore
failing criteria (b), (f) and (h). In addition, none of the above
approaches can support best effort and time-sensitive traffic
over the same infrastructure (criterion (a)). By contrast, IEEE
802.1 TSN [16] leverages duration time-slots which may be
preempted (802.1Qbu) or reserved per class of service
(802.1Qbv). Unfortunately, even if TSN has been proved to
guarantee highly controlled latency as in FUSION [17][18] for

two classes of service, we will show in this paper (Section VI)
that performance guarantee cannot be achieved for a large
number of flows belonging to a same class of service – as
expected in the Edge Cloud. A workaround solution would be
to ensure performance guarantee per-flow instead of per class
of service, but since TSN is a fully opaque solution – all
transiting traffic is processed and buffered at intermediate
nodes, TSN cannot scale to hundreds of time-sensitive flows;
failing criterion (f) and consequently (c) and (d). Also, TSN is
not dynamically reconfigurable, failing criterion (b). [19]-[22]

In the next section we present an alternative solution that
leverages complementary, highly dynamic optical slot
switching technologies to provide guarantees end-to-end on a
per-flow basis, as seen below.

III. DDN ARCHITECTURE

DDN (Fig. 3) is a homogeneous time slotted network fabric,
where client packets are aggregated into short time slots (few
microseconds), as shown in Fig. 3. For each time slot a header
is built and sent either, out-of-band, over control channel
(CBOSS) or, in-band, over data channel (OE). A header
contains control information (e.g., routing, quality of service
management) common to all client packets carried in the
corresponding time slot. In DDN, time slots may be reserved to
carry time-sensitive data traffic in order to guarantee channel
access in time and/or capacity. The main differentiator of DDN
and classical time division multiplexing (TDM) calendar-like
allocations - used for instance in TSN - is the opportunistic use
of time slots. Indeed, in DDN any node (CBOSS/OE) can claim
any empty and unreserved slot to insert its own best effort
traffic. Opportunism decreases scheduling complexity while
allowing statistical multiplexing: that is an appreciable benefit

Fig. 4.a. CBOSS node architecture.

Fig.4.b. OE node architecture.

Fig. 3. End-to-end Deterministic and Dynamic Network.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

in the Edge Cloud where we expect best effort traffic to
maintain dominance. Note that DDN can encapsulate any upper
layer protocol. To optimize throughput-efficiency during client
data encapsulation into time slots, a segmentation and
reassembly (SAR) mechanism is used.

From an end-to-end point of view, transitions between
CBOSS and OE domains are done in the electronic domain
(Fig. 3) to avoid the need of slot synchronization and slot size
compatibility across domains. For both OE and CBOSS
domains, resource allocation is centrally managed by an SDN
controller. Each controller compute and distributes to DDN
nodes in its perimeter a schedule of slot reservations. By
making the SDN controllers of different domains collaborating,
slots may be dynamically reserved end-to-end to deliver slot-
based virtual circuits. The cooperation of the SDN controllers
can be helped by an Orchestrator that simplifies the
communication phase between the SDN controllers
(Section V). Time-sensitive flows can therefore be physically
isolated and carried across the network without interaction with
best effort traffic or between themselves, hence providing hard
slicing.

A. CBOSS for intra data center networks

CBOSS (Figs. 4.a and 5.a) is a time and wavelength division
multiplexed network that relies on an all-optical switching
fabric to provide high-performance communication between
Top of Racks (ToRs). CBOSS network interconnects ToRs
through colored fixed-duration optical slots that transport client
data. At the physical layer, we demonstrated that CBOSS can
multiplex dozens of 200 Gb/s channels on the same ring and
traverse tens of nodes [23]. Transmission of optical slots is done
using fast-tunable transmitters that adapt wavelength for each
slot according to the destination node. The optical per-
wavelength routing is possible since, at reception, each node
implements a wavelength dropper (1x2 Wavelength Selective
Switch) that extracts a set of pre-defined wavelengths. The data
carried by these wavelengths is transported all optically
(without opto-electronic conversion), hence latency due to
electronic processing and buffering at intermediate nodes is

removed. Only the control channel carrying the slot headers is
electronically processed at each node. A one slot fiber delay line
is used to re-align control and data channel.

B. OE for fronthaul networks

OE (Fig. 4.b and 5.b) is a time slotted network, partially
regenerating (electrically) data at each intermediate node. OE is
designed to scale to 1.6 Tb/s (4 wavelengths at 400 Gb/s each).
In OE, slot headers are attached to the slot itself. Even if OE is
an opaque technology it reduces electronic processing and
buffering through two mechanisms:
1) At intermediate nodes, only headers are processed and full
latency-hungry processing (e.g., at least 5 – 20 microseconds
FEC delay per hop [24]) is performed only at in/egress nodes,
2) The transiting traffic has strict priority over the inserted
traffic at intermediate nodes.

In the following section, we explain how we control latency
and jitter in both CBOSS and OE.

Note that thanks to the all-optical transport of data in CBOSS

and the priority of transiting traffic in OE, in DDN each node
needs to keep track only of flows that are connect to itself, as
opposed to opaque solutions that needs to keep track of all flows
crossing by the node. This feature combined to the
opportunistic use of slots allows to DDN to remain a scalable
solution while offering per-flow guarantee of service
– compared to state-of-the-art solutions that can propose only
guarantee per class of service.

IV. LATENCY AND JITTER CONTROL IN DDN

A. Latency control

In addition to the opportunistic slot access, CBOSS and OE
allow slots reservation, in a periodic way over a fixed and cyclic
window (Fig.5), for dedicated per-flow connection. We define
a flow as a traffic exchanged between a source and a destination
client interface. As shown, in Fig.5 we perform queuing and slot
allocation (scheduling) in a per-flow manner in order to
guarantee quality of service per application and to satisfy future

Fig. 5. Queue management for latency and jitter control in (a) CBOSS and (b) OE

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

Edge Cloud requirements (Tab. 1). Fig. 5 shows how at each
time slot the schedule is used to identify the queue to read, and
for CBOSS the wavelength to transmit. Figs. 5.a and 5.b shows
an example of guaranteed flow transmission (in dotted lines) for
CBOSS and OE, respectively. The incoming client packets are
first directed to the corresponding queue – according to their
source and destination client addresses. Then, at each time slot,
the scheduler selects which queue to read (if the current slot is
a reserved slot, otherwise state-of-the-art queue management
policy is used on the best effort queues). Client packets in the
selected queue are encapsulated in slots and sent over the
channel – even if not fully filled for the reserved slots. To
optimize latency, if a client packet arrives in the middle of its
reserved slot, it directly starts to be sent in the current reserved
slot. If needed, client packet segmentation and reassembly can
be used to resume the packet transmission in the next reserved
slot. At reception, client packets are again buffered on the
corresponding queue before being directed to the right client
interface.

Using a periodic reservation of slots for a given flow, we
achieve network slicing at the physical layer and can isolate
flows and provide guaranteed latency according to each flow
requirements, unlike TSN that cannot achieve per-flow latency
control as explained in Section II.C.

B. Jitter control

In a time-slotted network using slots reservations, we identify
two main jitter sources:
• Forcing a client packet that can arrive at any time on the

cyclic window to wait for its reservation; its waiting time
may vary from 0 to the duration of the reservation
window.

• Segmentation and reassembly mechanism; assuming
client packets and slots of a same size. 1) If a client packet
is already buffered, it will be entirely transmitted in the
next reserved slot. 2) If a client packet arrives near the end
of a reserved slot, a first fragment of it may be sent, then
the remaining fragment will be sent in the following
reserved slot. Difference between 1) and 2) creates jitter.

To deal with latency variations, two approaches are possible:
 1) Jitter compensation: In this paper we propose to compensate
the jitter at the destination node where all client packets are
buffered at reception (Fig. 5.a) until their time-in-network
(latency experienced in the network) reaches a pre-defined
target latency. First, at the reception of a client packet, the node
time stamps the client packet before buffering it. To insert the
time stamp, each node relies on a local clock counter that
provides the local reference time. Then, each node broadcasts
its current reference time through the control channel. Each
node builds a lookup table where it stores the difference
between its own local reference time and that of the other nodes
in the network. The lookup table is updated periodically
accounting for any change in the difference of time reference of
nodes. Finally, at the destination node the time stamp is read,
and the lookup table is used to calculate the time-in-network and
estimate the penalty time that the client packet must wait, so it
reaches the target latency. The target latency should be larger

or equal to the worst latency (Tmax) in the network. In DDN,
Tmax can be pre-calculated and is defined as:

���� = ���� +
�� ∗
�� ∗ �
��

��
�� (eq. 1)

where Tm is a minimum latency due to fixed client delay,
encapsulation, segmentation and reassembly processing within
the node. Tp is the client packet duration, Ts is the slot duration
and N the number of reserved slots (uniformly spread) over a
window W.
Note that in [27] this mechanism was software-emulated, while
in this paper we propose a hardware implementation on the
DDN nodes. Running the jitter compensation mechanism in real
time that provides a deterministic jitter transmission is the
major contribution of the paper.
(2) Isochronous interface: In [24] we proposed a new
mechanism where client packet traffic is shaped into a bitstream
flow before insertion. More precisely, and as shown in Fig. 5.b,
the incoming client packets are stored in a rate shaping buffer
where idle symbols are inserted at the same rate if the shaping
buffer is empty. The resulting bit stream is carried at the slot
reservation rate to equalize client packet inter-arrival times.
Consequently, time-in-network variations is removed. Idle
symbols are removed at reception (Fig. 5.b). Note that
isochronous interface is well-adapted to constant bit rate (CBR)
client traffic. Explanation are provided in [24]

Since CBR traffic is more likely to be found in the fronthaul
(e.g., CPRI [3]) where OE is positioned, we implement
mechanism (1) in CBOSS and mechanism (2) in OE as shown
in Fig. 5. In Section VI we benchmark both solutions.

V. DYNAMICS IN DDN

Fig. 3, describes the proposed DDN-based Edge Cloud
network. The control architecture of CBOSS and OE is based
on a centralized SDN controller that decides on the slot
allocation. Each domain controller (CBOSS or OE) computes
and distributes to the network nodes in its domain a schedule of
slot reservations. The schedule may be recomputed every few
tens or hundreds of microseconds. Because the dynamic and
fast reconfigurability of the schedule is the key parameter to
adapt the network to the fast traffic variations in the Edge
Cloud, in DDN slot reservations will be done in parallel across
network domains from end-to-end – from object to object. This
is done by making SDN controllers of different network
segments collaborating to deliver slot-based slices (Fig. 3). The
cooperation of the SDN controllers can be helped by an
Orchestrator that simplifies the synchronization phase between
the SDN controllers through three basic steps:
1) The orchestrator receives a traffic connectivity request from
an object (e.g., server).
2) The orchestrator relays the request to the SDN controllers.
3) Each SDN controller translates the traffic request into slots
reservation and either validates the request and apply the new
reservation schedule or rejects the request.
Note that in this paper, the DDN testbed includes the SDN
controllers that receive traffic request from a user interface, and
not yet from the orchestrator. The communication between the
object, the orchestrator and the SDN controllers is an ongoing

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

work.
In DDN, control plane – communication from the SDN

controller down to the DDN node – is usually distributed over
the IP layer. In this case, control information coming from the
SDN controller is sent over an IP/Ethernet network to each
SDN agents interfacing a node. This control plane architecture
is used in OE, where an SDN agent is dedicated per OE node to
relay the control information carried by the OE bus after being
encapsulated into Ethernet frames.

An alternative to this control plan, is a proposition we
implanted in CBOSS. In a CBOSS domain, the control
information is transmitted to a single SDN agent which
interfaces with the CBOSS network through a specific node
called master node. Once the information is received by the
master node the control information is sent to each other node
through the control channel. This control plane architecture has
the advantage to use a dedicated path – the control channel,
hence avoiding any switching processing.

VI. END-TO-END DDN EVALUATION

In the following, we evaluate the end-to-end performance of
DDN on a real testbed. We compare DDN to what the
community is considering as the most relevant solution to
deliver controlled latency and service guarantee, TSN
(802.1 Qbu and Qbv) network. To do so, we use in our testbed
Ethernet switches to emulate the behavior of TSN switches in a
time-sensitive environment. Indeed, as explained in
Section II.C, TSN (802.1 Qbu and Qbv) guarantees
performance per-class of service. Therefore, in an environment
where more than one flow belongs to a same time-sensitive
class of service, no per-flow performance can be guaranteed
pre-emption becomes ineffective. In the following we call the
Ethernet switches emulating TSN in a time-sensitive
environment: TSN-like switches.

We implement, evaluate and compare DDN to Ethernet
switches emulating TSN using a testbed illustrated in Fig. 6
(hardware) and Fig. 7 (logical connections). In this setup we
reproduce an example of traffic exchange in an Edge Cloud

Fig. 7. DDN and Ethenet/TSN testbed (logical connection). Fig. 8. Intra (a) and inter (b) edge data center testbed.

Fig. 6. DDN and TSN-like switches testbed (hardware).

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

network. We connect two Edge data centers. The first Edge data
center hosts servers with 12 client interfaces. These servers are
interconnected using a CBOSS network with 3 nodes and
3 wavelengths. The second Edge data center is emulated by a a
single server. Both data centers are connected using a 2-node
OE bus. In addition, we setup a communication across the Edge
Cloud between two distant machines e.g., industrial robot and
the third Edge Cloud.

In the current implementation, CBOSS and OE nodes
supports 4 and 2 clients, respectively. While OE and CBOSS
off-line interfaces were reported earlier at higher rate, we
demonstrate here an end-to-end network where all equipment
run at 10 Gb/s, accounting for the constraints of real-time
implementation in FPGAs. The net available capacity is
6.5 Gb/s per CBOSS wavelength and 8 Gb/s for the OE bus.
The difference between the raw and neat capacity is mostly due
to encoding overhead (8b/10b), and inter-slot (gap) fixed-time
for CBOSS. Note that we use a hardware traffic generator from
Spirent to generate constant bit rate traffic from/to some servers
in Fig. 7. All other flows are generated using Pktgen and
MoonGen, software-based traffic generators powered by the
DPDK fast packet processing framework [25][26].

We benchmark DDN vs. TSN by replacing each involved
CBOSS or OE node by a 20-ports 10G Ethernet switch (Fig. 6)
acting as a TSN (802.1Qbu and Qbv) switch. We removed
propagation in reported latencies. In the following, we first
evaluate the CBOSS intra-DC performance and OE inter-DC
performance separately, then we evaluate the end-to-end
performance of the integrated DDN (CBOSS+OE) testbed.

A. Intra-DC performance

 In CBOSS, latency determinism is guaranteed through two
mechanisms: periodic slot reservation (over a window of length
W slots, each slot of duration Ts = 1.46 µs and the gap time
around 100 ns) to cap the maximum queuing delay, and jitter
compensation (explained in Section IV.B). In order to evaluate
the performance of both mechanisms combined, we choose
client packets of duration Tp = 1.45µs, a window size W = 10
and reserve N = 2 slots (uniformly spread over the window).
From testbed measurements, we report a minimum latency
(Section IV.B) Tm of 6.4 µs, hence set a target latency for jitter

compensation to 14.2 µs (Tmax = 13.3 µs (eq. 1) with a margin).
In Fig. 9.a and 9.b, we report latency distribution for a constant
bit rate flow F1 sent from a Spirent replacing server 0 and 8 on
Fig. 8.a.
First F1 is set to a low rate of 100Mb/s (Fig. 9.a), then increased
to a rate of 1Gb/s (Fig. 9.b). Before jitter compensation, in both
cases, the pdf is spread from Tm to Tmax. After jitter
compensation, the pdf is narrowed around the target latency of
14.2 µs (at +/- 100ns precision dur to hardware measurements
resolution). Thereby, CBOSS node is deterministic.

 To prove per-flow guarantee in CBOSS, we keep flow F1
and inject three additional competing flows: f2, f3 and f4
(Fig. 8.a) with bursty client packet arrivals (1 burst = 2 packets)
from three servers of rack 1 to three servers of rack 3. Each flow
is 1 Gb/s with 2 reserved slots. Tab. 2 shows average latency
and jitter for all flows. Note that due to implementation
limitation (buffer size), for bursty flows (f2, f3, f4) we
compensate jitter by soft (offline latency equalization) using a
target latency of 37 µs corresponding to Tmax of 34 µs with a
margin. This is denoted by (*) in Tab. 2.
Determinism for F1 is maintained network-wide and all flows
(with same characteristics) experience the same performance;
thus, CBOSS ensures per-flow deterministic latency.

Fig. 11. End-to-end integrated DDN-based edge data center testbed.

Fig. 9 Latency distribution for CBOSS: a) single-flow 100 Mb/s flow, b) single-flow 1Gb/s and c) multi-flow.

0

0.2

0.4

0.6

0.8

1

8 38 68 98 12
8

15
8

18
8

21
8

TSN-like switch

CBOSS

14
.2

(c)

(µs)
0

0.2

0.4

0.6

0.8

1

6.2 7.8 9.4 11 12.6 14

14
.2

(b)

0

0.2

0.4

0.6

0.8

1

6.2 7.8 9.4 11 12.6 14

(a)

(µs)

P
D

F

14
.2

After jitter
compensation

Before jitter
compensation

After jitter
compensation

Before jitter
compensation

Fig. 10. Latency distribution for OE.

0

0.1

0.2

0.3

0.4

5
3
.9 5
4

5
4
.1

5
4
.2

5
4
.3

5
4
.5

5
4
.6

5
4
.7

5
4
.8 (µs)

P
D

F

TAB. 2: AVERAGE LATENCY AND JITTER IN CBOSS
Flow Latency before jitter

compensation
Jitter Latency after jitter

compensation
F1 10.9 µs 2.5 µs 14.2 µs +/-100ns
f2 16.9 µs 6.35 µs 37 µs*
f3 16.9 µs 6.37 µs 37 µs*
f4 16.9 µs 6.35 µs 37 µs*

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

To further stress the DDN (CBOSS) structure we increase the
burstiness of the random flows (f2, f3, f4) and insert new
competing flows from four servers on rack 2 to four servers on
rack 3 (Fig. 8.a). Two slots are reserved for F1 and 1 slot for
each other flow. Fig. 9.c compares DDN and TSN-like switches
for F1. CBOSS achieves per-flow deterministic latency of
14.2 µs, while TSN-like presents an average/max latency of
33.6/205.5 µs and a jitter of 37.1 µs, which may be compatible
with current applications, but will not be sufficient in future
Edge Cloud time-sensitive environments.

B. Inter-DC performance

In OE, latency is also controlled through slot reservation and
jitter is avoided at insertion by treating an input traffic as an
isochronous flow shaped at the rate of reserved slots: the delay
between two payloads is conserved by en/decapsulating the
dummy data in-between. In OE, with a fully reserved window,
we report a latency Tm = 11.2µs and a jitter of 83 ns. Here again,
jitter precision is limited by hardware measurements resolution
and could even be lower than what we report.
Fig. 10 reports the latency distribution of a 1Gb/s flow F2
crossing two OE nodes, using N = 3 reserved slots (quasi-
uniformly spread) over a window of W = 16 slots (slot duration:
Ts = 8.1 µs). F2 is a constant bit rate traffic generated by the
Spirent. Again, the very narrow pdf, around Tmax = 54 µs (eq. 1),
shows that OE is deterministic.

 To prove per-flow guarantee in OE, we keep F2 and
introduce a competing overloading flow at the ingress OE node
(Fig. 8.b). With OE the flow F2 has same performances as
Fig. 10, while using TSN-like switches, we measure for F2 an
average and max latency of 3.778 and 3.949 ms respectively.
High jitter and losses are reported for both competing flows.

These results show that OE can transport per-flow latency-
sensitive traffic in 5G fronthaul or across a factory floor.

C. Distributed data center computing

We evaluate the distributed data center computing
performance by measuring the latency of flow F3 exchanged
between two servers on two different data centers (server 2
to 8). In this scenario, we also emulate a communication
between a machine in a factory floor and a distant server in a
third edge data center. As can be seen in Fig. 11 this last flow
is competing with F3 at the ingress OE node. Inside the first
Edge data center (#1), F3 is competing with three flows from
rack 1 and four flows from rack 2. Fig. 12a represents the
latency distribution of the end-to-end flow F3 for a moderate
load (50%). Fig. 12.a shows that DDN guarantees latency end-
to-end, while F3 experiences large (maximum) latency and high
jitter in the TSN-like network. Moreover, Fig. 12.b (inset: pdf)
shows that even if the minimum and average latency increments
slightly with the number of flows, the maximum latency
increases rapidly. Fig. 12.b shows that the TSN-like
performance (maximum latency) is degrading when the number
of flows increases even for a constant load.
Fig. 13 shows that even when decreasing the load to 10%, the
maximum latency that can be experienced by time-sensitive
flows is as high as for a 60% load. Fig. 14 shows the variation
of maximum latency through time for 10% load generated by
20 flows. This figure shows that even for a network with a 10%
load generated by a small number of time-sensitive flows,
latency and jitter are out of control even within a TSN-like
network.

D. Connection establishment time

In DDN architecture resource allocation is centrally managed
in each domain by an SDN controller. Flow establishment time
was measured over CBOSS. Similar results are expected for OE
at the except for control information distribution delay.

Fig. 13. Impact of number of flows on latency for 60% and 10% load using
TSN-like switches.

0

0.5

1

1.5

2

0 20 40 60

la
te

nc
y

(m
s)

Average

60% Load

10% Load

60% Load 10% Load

Nbr of flows
Fig. 14. Maximum latency over time, per interval of 10ms (10% load, 20 flows)
using TSN-like switches.
.

Fig. 12 End-to-end latency distribution for DDN: a) comparison with TSN-like; b) impact of number of flows for 50% load using TSN-like switches.

0
100
200
300
400
500
600
700
800

0 5 10 15 20 25

La
te

nc
y

(µ
s)

(b)

Minimum

0

0.2

0.4

0.6

0.8

1

13 29 45 61 77 93 109 125 141 157 173

P
D

F

DDN (OE+CBOSS) (a)

TSN-like switch

(µs)

0
0.2
0.4
0.6
0.8

1

0 50 100 150 200

P
D

F

5 flows
10 flows

15 flows
20 flows

23 flows

Latency (µs)

Nbr of flows

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

The schedule establishment time takes around 1.96 ms, as can
be observed in Tab. 3 (excluding scheduling algorithm
computation time). Schedule establishment time is broken
down as follows:

• SDN to master node communication time: In our
current setup, the communication between the SDN
agent and the master node is carried out through a
Universal Asynchronous Receiver/Transmitter
(UART) interface running at 500 kbaud. By default,
the window size is set to 10 slots, then, the full
schedule size for 3 nodes is 30 bytes (1 byte per time
slot). The UART transmission time is 19.4 ms. The
UART communication can be substituted by a faster
interface such a 10G Ethernet interface. This
substitution is currently under implementation in our
DDN setup.

• Distribution time: Once the master node retrieves the
schedule it is distributed networkwide in few
microseconds (16.7 µs mainly due to propagation for
nearly 3.3 km CBOSS network).

• Execution time: Once the schedule received by a node,
this later one implements and executes the new
schedule in 3 clocks (19.2 ns).

Tab. 3 shows clearly that CBOSS nodes are designed to adapt
fast to new resource allocations and sub-millisecond flow
establishment time can envisaged by replacing the UART
interface with a faster interface as explained above.

VII. CONCLUSIONS

The hard challenge of Edge Cloud transport network is to
provide the jitter of circuit switching with the dynamics of
statistical multiplexing. To address this challenge, we proposed
implemented and demonstrated on a testbed a Dynamic
Deterministic Network that meets future Edge Cloud
requirements (Tab. 1). Our Dynamic Deterministic Network
can guarantee end-to-end deterministic per-flow latency of
70 microseconds (excluding propagation delay) with
sub-100 nanoseconds jitter and millisecond-timescale flow
establishment, paving the way for 5G uses cases such as
Industry 4.0, and future highly dynamic deterministic low
latency 5G applications.

ACKNOWLEDGMENTS

This work was supported by the DGE organization from the
French Ministry of Industry and the German Federal Ministry
of Education and Research (BMBF) through the CELTIC+
SENDATE-TANDEM project.

The authors would like to thank their colleague Tod Sizer for
their helpful discussion.

REFERENCES
[1] J. Pan and J. McElhannon, “Future edge cloud and edge computing for

internet of things applications,” IEEE Internet of Things Journal, vol. 5,

no. 1, pp. 439–449, Feb. 2018.

[2] S. Namba, T. Warabino, and S. Kaneko, “BBU-RRH switching schemes

for centralized RAN,” in Proc. International Conference on

Communications and Networking, 2012, pp. 762–766.

[3] D. Chitimalla, K. Kondepu, L. Valcarenghi, M. Tornatore, and

B. Mukherjee, “5G fronthaul — latency and jitter studies of CPRI over

Ethernet,” IEEE/OSA Journal of Optical Communications and

Networking, vol. 9, no. 2, pp. 172–182, Feb. 2017.

[4] W. A. Khan, L. Wisniewski, D. Lang and J. Jasperneite, “Analysis of the

requirements for offering industry 4.0 applications as a cloud

service,” in Proc. International Symposium on Industrial Electronics,

2017, pp. 1181–1188.

[5] Qualcomm, “Leading the world to 5G: Cellular Vehicle-to-Everything

(C- V2X) technologies,” Jun. 2016.

[6] M. A. Lema, A. Laya, T. Mahmoodi, M. Cuevas, J. Sachs, J. Markendahl,

and M. Dohler, “Business Case and Technology Analysis for 5G Low

Latency Applications,” in IEEE Access, vol. 5, pp. 5917–5935, 2017.

[7] A10 Networks, “Low Latency Trading in FIX Environments,” white paper,

2014.

[8] A. Roy, H. Zeng, J. Bagga, G. Porter, and A.-C. Snoeren, “Inside the

social network’s (data center) network,” in Proc. Association for

Computing Machinery Magazine, Aug. 2015.

[9] IEEE Std. P802.1CM, “Time sensitive networking for fronthaul,” Sep.

2017, http://www.ieee802.org/1/pages/802.1cm.html

[10] H. Li, L. Han, R. Duan, and G. M. Garner, “Analysis of the synchronization

requirements of 5G and corresponding solutions,” IEEE

Communications Standards Magazine, vol. 1, no. 1, pp. 52–58, 2017.

[11] 5G-PPP, “5G and the factories of the future,” 2015, white paper,

https://5g-ppp.eu/wp-content/uploads/2014/02/5G-PPP-White-

Paper-on-Factories-of-the-Future-Vertical-Sector.pdf.

[12] Intel, “Achieving real-time performance on a virtualized industrial

control platform,” 2014, white paper,

https://www.intel.com/content/dam/www/public/us/en/documents/

white-papers/industrial-solutions-real-time-performance-white-

paper.pdf.

[13] K. Lee, J. Kim, Y. Park, H. Wang, and D. Hong, “Latency of Cellular-Based

V2X: Perspectives on TTI-Proportional Latency and TTI-Independent

Latency,” in IEEE Access, vol. 5, pp. 15800–15809, Aug. 2017

[14] N. Benzaoui, J. Estaran, E. Dutisseuil, H. Mardoyan, G. de Valicourt,

A. Dupas, Q. Pham Van, D. Verchere, B. Uscumlic, M. Szczerban

Gonzalez, P. Dong, Y. Chen, S. Bigo, and Y. Pointurier, “CBOSS: Bringing

Traffic Engineering Inside Data Center Networks,” IEEE/OSA Journal of

Optical Communications and Networking, vol. 10, no. 7, pp. 117–125,

July 2018.

[15] W. Lautenschlaeger, N. Benzaoui, F. Buchali, L. Dembeck, R. Dischler,

B. Franz, U. Gebhard, J. Milbrandt, Y. Pointurier, D. Roesener,

L. Schmalen, A. Leven, “Optical Ethernet — Flexible Optical Metro

Networks,” Journal of Lightwave Technology, vol. 35, no. 12, pp.

2346– 2357, Jun. 2017.

[16] 802.1 TSN, https://1.ieee802.org/tsn/

[17] R. Veisllari, S. Bjornstad, J. Braute, K. Bozorgebrahimi, and C. Raffaelli,

“Field-trial demonstration of cost efficient sub-wavelength service

through integrated packet/circuit hybrid network,” IEEE/OSA Journal of

Optical Communications and Networking, vol. 7, no. 3, pp. 379–387,

Mar. 2015.

[18] S. Bjornstad, “Can OTN be replaced by Ethernet,” in Proc. Optical

Networks Design and Modeling, May 2018, pp. 220–225.

[19] N. J. Gomes, P. Sehier, H. Thomas, P. Chanclou, B. Li, D. Munch,

P. Assimakopoulos, S. Dixit, and V. Jungnickel, “Boosting 5G through

Ethernet,” IEEE Vehicular Technology Magazine, vol. 13, no. 1,

pp. 74– 84, Mar. 2018.

[20] F. Durr and N.-G. Nayak, “No-wait packet scheduling for IEEE

timesensitive networks (TSN),” in Proc. International Conference on

Real-Time Networks and Systems, Oct. 2016.

[21] N. G. Nayak, F. Durr, and K. Rothermel, “Time-sensitive software

defined networks (TSSDN) for real-time applications,” in

TABLE 3: AVERAGE LATENCY AND JITTER IN CBOSS

Overall schedule

establishment time

UART

trans. time

Distributi

on time

Per node schedule

execution time

1.96 ms 1.94 ms 16.7 µs 19.2 ns

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

Proc. International Conference on Real-Time Networks and Systems,

Oct. 2016.

[22] S.-S. Craciunas, R. S. Oliver, M. Chmelik, and W. Steiner, “Scheduling

real-time communication in IEEE 802.1Qbv time sensitive networks,”

in. Proc. International Conference on Real-Time Networks and Systems,

Oct. 2016.

[23] M.-A. Mestre, G. de Valicourt, P. Jenneve, H. Mardoyan, S. Bigo and Y.

Pointurier, “Optical slot switching-based datacenters with elastic burst-

mode coherent transponders,” in Proc the European Conference on

Optical Communication, Th.2.2.3, 2014, pp. 1–3.

[24] W. Lautenschlaeger, L. Dembeck, and U. Gebhard, “Prototyping Optical

Ethernet — A Network for Distributed Data Centers in the Edge Cloud,”

IEEE/OSA Journal of Optical Communications and Networking, vol.10,

no. 12, pp. 1005–1014, 2018.

[25] P. Emmerich, S. Gallenmuller, D. Raumer, and F. Wohlfart,

“MoonGen: A Scriptable High-Speed Packet Generator,” in

Proc. Internet Measurement Conference, Oct. 2015, pp.275–287.

[26] D. Turullab, P. Sjodina, and R. Olsson, “Pktgen: Measuring performance

on high speed networks,” Computer Communications, vol.82, pp.

39– 48, May 2016.

[27] N. Benzaoui, M. Szczerban Gonzalez, M.-V. Rivera, J.-M. Estaran, H.

Mardoyan, W. Lautenschlaeger, U. Gebhard, L. Dembeck, Y. Pointurier,

and S. Bigo, “DDN: Deterministic Dynamic Networks,” in Proc. European

Conference on Optical Communication, Th3B.6, 2018, pp. 1-3.

