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@ Features of all-optical networks

e Circuit switched — lightpaths
o Flexibility (traffic engineering), speed, cost

Introduction

@ New issues arise with all-optical networks

o Optical regeneration currently unavailable

e Signal impairments are transmitted over extremely long
paths without any regeneration

e Physical layer cannot be considered as perfect
= Bit-Error Rate (BER)
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Lightpath model
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@ ISI (chromatic dispersion, SPM)
o Amplifier (ASE) noise
o Interchannel crosstalk (XPM, FWM)
@ Node crosstalk (optical leaks within nodes)
@ BER depends on all these effects (and more)
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Routing

Offline Routing
o Fixed Routing

@ Time Dependent Routing
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Routing @
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@ Fixed Routing

@ Time Dependent Routing

Online Routing

Reinforcement

@ State Dependent Routing learning
@ Event Dependent Routing o
o Reinforcement learning




RWA in all-optical networks @
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Specificities of RWA in all-optical networks: e

@ Wavelength continuity constraint

@ QoS constraint = cross-layer design

@ Distributed algorithms are desirable
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Reinforcement
Learning
Based Routing
in All-Optical
Networks with

Specificities of RWA in all-optical networks: e

@ Wavelength continuity constraint

@ QoS constraint = cross-layer design

@ Distributed algorithms are desirable

@ Design a reinforcement learning algorithm Reinforcement

learning

e Account for physical impairments routing
e Distributed
e Make routing decisions based on network feedback




Reinforcement learning @
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Reinforcement learning @

Reinforcement
Learning

. 5 . . . Based Routing
@ Alternate routing, wavelength assignment fixed (first-fit) in All-Optical
d Networks with
. S, Physical
@ Routes between s and d: {R.,"} s

@ Load Sharing Factor (Pl-s'd): probability of selecting Ris’d

Algorithm description

Upon receiving of a new lightpath establishment request
betWeen S and d: Reinforcement

learning
routing

o Select one route R at random using {P{7}

@ Check all wavelengths in turn for the wavelength
continuity and the QoS constraint
e Accept call on first wavelength that meets all constraints

o Update {Pis’d} using reinforcement learning techniques
and Accept/Reject information




Reinforcement Learning Engine

Need an updating scheme suitable for Reinforcement
Learning

@ Incomplete information about the network Based Routing

in All-Optical

5 B 5 o Networks with
@ Learn routing policy via trial and error Physical

Impairments

Learning engine
for pag (s,%)
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{Ri, R, ... R}
{P1,P>,.... P}

accept/

reject




Reinforcement Learning Engine @

Need an updating scheme suitable for Reinforcement
earning

@ Incomplete information about the network [Bhe] [Reniilieg

in All-Optical

0 . 5 . Networks with
@ Learn routing policy via trial and error Physical

Impairments

Learning Automata

@ Linear Reward £-Penalty (LREP)

e Linearly increase P; when lightpath
is accepted on route R;

o Linearly decrease P; when lightpath
is rejected on route R;

Learning engine
for pair (s, d)
{Ri, R, ... R}
{Pr. P, ..., P}

Reinforcement
learning
routing

@ penalty param. < reward param. ARl ki

@ Performs well in non-stationary
environments

@ Does not get stuck in absorbing states

@ Suboptimal




Simulation parameters

NSF topology
| N

Parameters

Description Value
Span length 70 km
Fiber type SMF
Nonlinearities | 2.2 (W/m)~!
Dispersion 100% post
Pulse shape NRZ
Peak power 2 mW
Bit rate 10 Gbps
Max BER 10-°
# wavelengths 8
# alt. routes 4
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Simulation results
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Offered load per (source, destination) pair

@ Compare with plain shortest path and random route choice

@ Blocking rates are lowered by =~ 10% at higher loads
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Conclusions and future work @

Reinforcement

Learning
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in All-Optical
@ Proof of concept Networks with
Physical
@ Blocking rates can be lowered using Reinforcement Impairments
Learning
@ The routing technique is completely distributed

Combined routing and wavelength assignment

Questions ?

Conclusions
and future
work
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