🐯 McGill

Reinforcement Learning Based Routing in All-Optical Networks with Physical Impairments

Yvan Pointurier and Fariba Heidari

Electrical and Computer Engineering McGill University, Montreal, QC, Canada

September 13, 2007 IEEE BROADNETS: Optical Cross-Layer Design Reinforcement Learning Based Routing in All-Optical Networks with Physical Impairments

Outline

Introduction

Lightpath model

Reinforcement learning routing

Simulations

Introduction

- 2 Lightpath model
- 3 Reinforcement learning routing

④ Simulations

5 Conclusions and future work

Reinforcement Learning Based Routing in All-Optical Networks with Physical Impairments

🐯 McGill

Outline

Introduction

_ightpath nodel

Reinforcement learning routing

Simulations

Cross-layer design

- Current high-speed optical networks
 - Bottleneck due to electrical conversions
- Features of all-optical networks
 - Circuit switched \rightarrow lightpaths
 - Flexibility (traffic engineering), speed, cost
- New issues arise with all-optical networks
 - Optical regeneration currently unavailable
 - Signal impairments are transmitted over extremely long paths without any regeneration
 - Physical layer cannot be considered as perfect ⇒ Bit-Error Rate (BER)

🐯 McGill

Reinforcement Learning Based Routing in All-Optical Networks with Physical Impairments

Outline

Introduction

Lightpath model

Reinforcement learning routing

Simulations

Cross-layer design

- Current high-speed optical networks
 - Bottleneck due to electrical conversions
- Features of all-optical networks
 - Circuit switched \rightarrow lightpaths
 - Flexibility (traffic engineering), speed, cost
- New issues arise with all-optical networks
 - Optical regeneration currently unavailable
 - Signal impairments are transmitted over extremely long paths without any regeneration
 - Physical layer cannot be considered as perfect ⇒ Bit-Error Rate (BER)

🐯 McGill

Reinforcement Learning Based Routing in All-Optical Networks with Physical Impairments

Outline

Introduction

Lightpath model

Reinforcement learning routing

Simulations

Cross-layer design

- Current high-speed optical networks
 - Bottleneck due to electrical conversions
- Features of all-optical networks
 - Circuit switched \rightarrow lightpaths
 - Flexibility (traffic engineering), speed, cost
- New issues arise with all-optical networks
 - Optical regeneration currently unavailable
 - Signal impairments are transmitted over extremely long paths without any regeneration
 - Physical layer cannot be considered as perfect
 ⇒ Bit-Error Rate (BER)

🐯 McGill

Reinforcement Learning Based Routing in All-Optical Networks with Physical Impairments

Outline

Introduction

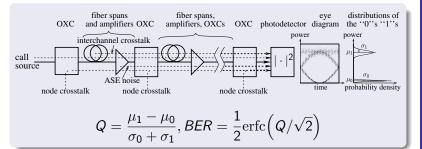
Lightpath model

Reinforcement learning routing

Simulations

Lightpath model

🐯 McGill



- ISI (chromatic dispersion, SPM)
- Amplifier (ASE) noise
- Interchannel crosstalk (XPM, FWM)
- Node crosstalk (optical leaks within nodes)
- BER depends on all these effects (and more)

Reinforcement Learning Based Routing in All-Optical Networks with Physical Impairments

Outline

Introduction

Lightpath model

Reinforcement learning routing

Simulations

Offline Routing

- Fixed Routing
- Time Dependent Routing

Online Routing

- State Dependent Routing
- Event Dependent Routing
 - Reinforcement learning

Reinforcement Learning Based Routing in All-Optical Networks with Physical Impairments

Outline

Introduction

Lightpath model

Reinforcement learning routing

Simulations

Offline Routing

- Fixed Routing
- Time Dependent Routing

Online Routing

- State Dependent Routing
- Event Dependent Routing
 - Reinforcement learning

🐯 McGill

Reinforcement Learning Based Routing in All-Optical Networks with Physical Impairments

Outline

Introduction

Lightpath model

Reinforcement learning routing

Simulations

Specificities of RWA in all-optical networks:

- Wavelength continuity constraint
- QoS constraint ⇒ cross-layer design
- Distributed algorithms are desirable
- Design a reinforcement learning algorithm
 - Account for physical impairments
 - Distributed
 - Make routing decisions based on network feedback

🐯 McGill

Reinforcement Learning Based Routing in All-Optical Networks with Physical Impairments

Outline

Introduction

Lightpath model

Reinforcement learning routing

Simulations

Specificities of RWA in all-optical networks:

- Wavelength continuity constraint
- QoS constraint ⇒ cross-layer design
- Distributed algorithms are desirable
- Design a reinforcement learning algorithm
 - Account for physical impairments
 - Distributed
 - Make routing decisions based on network feedback

🐯 McGill

Reinforcement Learning Based Routing in All-Optical Networks with Physical Impairments

Outline

Introduction

Lightpath model

Reinforcement learning routing

Simulations

Reinforcement learning

Setup

- Alternate routing, wavelength assignment fixed (first-fit)
- Routes between s and d: $\{R_i^{s,d}\}$
- Load Sharing Factor $(P_i^{s,d})$: probability of selecting $R_i^{s,d}$

Algorithm description

Upon receiving of a new lightpath establishment request between *s* and *d*:

- Select one route $R_i^{s,d}$ at random using $\{P_i^{s,d}\}$
- Check all wavelengths in turn for the wavelength continuity and the QoS constraint

Accept call on first wavelength that meets all constraints

 Update {P^{s,d}_i} using reinforcement learning techniques and Accept/Reject information

🐯 McGill

Reinforcement Learning Based Routing in All-Optical Networks with Physical Impairments

Outline

Introduction

Lightpath model

Reinforcement learning routing

Simulations

Reinforcement learning

Setup

- Alternate routing, wavelength assignment fixed (first-fit)
- Routes between s and d: $\{R_i^{s,d}\}$
- Load Sharing Factor $(P_i^{s,d})$: probability of selecting $R_i^{s,d}$

Algorithm description

Upon receiving of a new lightpath establishment request between s and d:

- Select one route $R_i^{s,d}$ at random using $\{P_i^{s,d}\}$
- Check all wavelengths in turn for the wavelength continuity and the QoS constraint
 - Accept call on first wavelength that meets all constraints
- Update {P_i^{s,d}} using reinforcement learning techniques and Accept/Reject information

🐯 McGill

Reinforcement Learning Based Routing in All-Optical Networks with Physical Impairments

Outline

Introduction

Lightpath model

Reinforcement learning routing

Simulations

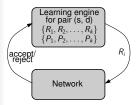
Reinforcement Learning Engine

Need an updating scheme suitable for

- Incomplete information about the network
- Learn routing policy via trial and error

Learning Automata

- Linear Reward \mathcal{E} -Penalty (LR \mathcal{E} P)
 - Linearly increase *P_i* when lightpath is accepted on route *R_i*
 - Linearly decrease *P_i* when lightpath is rejected on route *R_i*
- penalty param. \ll reward param.
- Performs well in non-stationary environments
- Does not get stuck in absorbing states
- Suboptimal



🐯 McGill

Reinforcement Learning Based Routing in All-Optical Networks with Physical Impairments

Outline

Introduction

Lightpath model

Reinforcement learning routing

Simulations

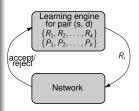
Reinforcement Learning Engine

Need an updating scheme suitable for

- Incomplete information about the network
- Learn routing policy via trial and error

Learning Automata

- Linear Reward \mathcal{E} -Penalty (LR \mathcal{E} P)
 - Linearly increase *P_i* when lightpath is accepted on route *R_i*
 - Linearly decrease P_i when lightpath is rejected on route R_i
- penalty param. \ll reward param.
- Performs well in non-stationary environments
- Does not get stuck in absorbing states
- Suboptimal



🐯 McGill

Reinforcement Learning Based Routing in All-Optical Networks with Physical Impairments

Outline

Introduction

_ightpath nodel

Reinforcement learning routing

Simulations

Simulation parameters

NSF topology

Parameters

Description	Value
Span length	70 km
Fiber type	SMF
Nonlinearities	$2.2 \ (W/m)^{-1}$
Dispersion	100% post
Pulse shape	NRZ
Peak power	2 mW
Bit rate	10 Gbps
Max BER	10 ⁻⁹
# wavelengths	8
# alt. routes	4

Reinforcement Learning Based Routing in All-Optical Networks with Physical Impairments

🐯 McGill

Outlin

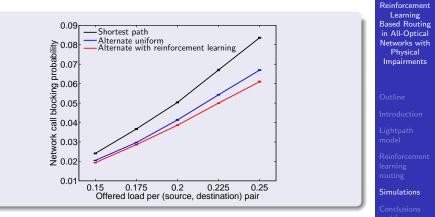
Introduction

Lightpath model

Reinforcement learning routing

Simulations

Simulation results



- Compare with plain shortest path and random route choice
- $\bullet\,$ Blocking rates are lowered by $\approx 10\%$ at higher loads

🐯 McGill

Conclusions and future work

Conclusions

- Proof of concept
- Blocking rates can be lowered using Reinforcement Learning
- The routing technique is completely distributed

Future work

- Combined routing and wavelength assignment
- Questions ?

🐯 McGill

Reinforcement Learning Based Routing in All-Optical Networks with Physical Impairments

Outline

Introduction

Lightpath model

Reinforcement learning routing

Simulations