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Cross-layer design

Current high-speed optical networks

Bottleneck due to electrical conversions

Features of all-optical networks

Circuit switched → lightpaths
Flexibility (traffic engineering), speed, cost

New issues arise with all-optical networks

Optical regeneration currently unavailable
Signal impairments are transmitted over extremely long
paths without any regeneration
Physical layer cannot be considered as perfect
⇒ Bit-Error Rate (BER)



Reinforcement
Learning

Based Routing
in All-Optical
Networks with

Physical
Impairments

Outline

Introduction

Lightpath
model

Reinforcement
learning
routing

Simulations

Conclusions
and future
work

Cross-layer design

Current high-speed optical networks

Bottleneck due to electrical conversions

Features of all-optical networks

Circuit switched → lightpaths
Flexibility (traffic engineering), speed, cost

New issues arise with all-optical networks

Optical regeneration currently unavailable
Signal impairments are transmitted over extremely long
paths without any regeneration
Physical layer cannot be considered as perfect
⇒ Bit-Error Rate (BER)



Reinforcement
Learning

Based Routing
in All-Optical
Networks with

Physical
Impairments

Outline

Introduction

Lightpath
model

Reinforcement
learning
routing

Simulations

Conclusions
and future
work

Cross-layer design

Current high-speed optical networks

Bottleneck due to electrical conversions

Features of all-optical networks

Circuit switched → lightpaths
Flexibility (traffic engineering), speed, cost

New issues arise with all-optical networks

Optical regeneration currently unavailable
Signal impairments are transmitted over extremely long
paths without any regeneration
Physical layer cannot be considered as perfect
⇒ Bit-Error Rate (BER)



Reinforcement
Learning

Based Routing
in All-Optical
Networks with

Physical
Impairments

Outline

Introduction

Lightpath
model

Reinforcement
learning
routing

Simulations

Conclusions
and future
work

Lightpath model
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ISI (chromatic dispersion, SPM)

Amplifier (ASE) noise

Interchannel crosstalk (XPM, FWM)

Node crosstalk (optical leaks within nodes)

BER depends on all these effects (and more)
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Routing

Offline Routing

Fixed Routing

Time Dependent Routing

Online Routing

State Dependent Routing

Event Dependent Routing

Reinforcement learning
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RWA in all-optical networks

Specificities of RWA in all-optical networks:

Wavelength continuity constraint

QoS constraint ⇒ cross-layer design

Distributed algorithms are desirable

Design a reinforcement learning algorithm

Account for physical impairments
Distributed
Make routing decisions based on network feedback
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Reinforcement learning

Setup

Alternate routing, wavelength assignment fixed (first-fit)

Routes between s and d : {Rs,d
i }

Load Sharing Factor (Ps,d
i ): probability of selecting Rs,d

i

Algorithm description

Upon receiving of a new lightpath establishment request
between s and d :

Select one route Rs,d
i at random using {Ps,d

i }
Check all wavelengths in turn for the wavelength
continuity and the QoS constraint

Accept call on first wavelength that meets all constraints

Update {Ps,d
i } using reinforcement learning techniques

and Accept/Reject information
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Reinforcement Learning Engine

Need an updating scheme suitable for

Incomplete information about the network

Learn routing policy via trial and error

Learning Automata

Linear Reward ε-Penalty (LRεP)

Linearly increase Pi when lightpath
is accepted on route Ri

Linearly decrease Pi when lightpath
is rejected on route Ri

penalty param. � reward param.

Performs well in non-stationary
environments

Does not get stuck in absorbing states

Suboptimal

Learning engine
for pair (s, d)

Network

accept/
reject

{R1, R2, . . . , Rk}
{P1, P2, . . . , Pk}

Ri
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Simulation parameters

NSF topology
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Parameters

Description Value
Span length 70 km
Fiber type SMF

Nonlinearities 2.2 (W/m)−1

Dispersion 100% post
Pulse shape NRZ
Peak power 2 mW

Bit rate 10 Gbps
Max BER 10−9

# wavelengths 8
# alt. routes 4
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Simulation results
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Shortest path
Alternate uniform
Alternate with reinforcement learning

Compare with plain shortest path and random route choice

Blocking rates are lowered by ≈ 10% at higher loads
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Conclusions and future work

Conclusions

Proof of concept

Blocking rates can be lowered using Reinforcement
Learning

The routing technique is completely distributed

Future work

Combined routing and wavelength assignment

Questions ?
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