"An Offline Impairment Aware RWA Algorithm with Dedicated Path Protection Consideration"

Siamak Azodolmolky^{1;2}, Yvan Pointurier², Marianna Angelou², Josep Solé-Pareta¹, and Ioannis Tomkos²

sazo@ait.edu.gr http://www.ait.edu.gr

¹Technical University of Catalonia (UPC) ²Athens Information Technology (AIT)

- Introduction
- Motivations
- Problem definition
- Proposed framework
- Offline Impairment Aware RWA algorithm with Dedicated Path Protection
- Simulation Setup
- Results
- Questions & Answers

- Evolution of core optical networks:
 - Past, Present, Future!

Physical Impairments accumulation

- Signal impairments accumulate along a transparent optical path, therefore limiting the system reach and the overall network performance
- → Impairment aware routing and wavelength assignment algorithms

Failure localization

- Failure propagate in a transparent network environment and they can not be easily localized and isolated.

Control plane integration

- What to monitor and distribute?
- What is the best control plane integration model?

Toward Future Core Optical Networks

- The network evolution aims at:
 - Improved cost economics (less costly electronics)
 - Cost savings of a transparent solution over and opaque network design of up to 50% could be achieved
 - Source: M.Gunkel, et. al. "A Cost Model for WDM Layer", Photonics in Switching Conference, 2006.
 - Reduced investment and operations Efforts (CAPEX, OPEX)
 - Scalability (bit rate independence)
 - Suitability to future services (e.g. Grid computing)
- The main drivers for network architecture migration:
 - High bandwidth and end-to-end QoS guaranteed services
 - Dynamic (on demand) technology-independent service provisioning

Proposed framework (1/2)

www.ait.edu.gr

- Cross-layer optimization
 - Physical layer impairment monitoring/management
 - Impairment Aware Lightpath Routing (a.k.a. IA-RWA)
- The main Idea:
 - The development of a *dynamic network planning/operation tool* residing in the *core network* nodes that incorporates *real-time measurements* of optical layer performance into *IA-RWA algorithms* and is integrated into a unified control plane.

http://www.diconet.eu

Proposed framework (2/2)

Network Planning/operation Tool

NPOT: Key building blocks

www.ait.edu.gr

Network Planning and Operation Tool (NPOT)

Network Planner/Architect/Manager

Offline IA-RWA algorithm & 1+1 Protection support

Algorithm building blocks

- Demand Pre-processing
- Diverse routing engine
 - Breadth-First Search (BFS)
 - K-Shortest path
 - Bhandari algorithm for demands with protection request
- Physical Layer Performance Evaluator
 - Use "Q Factor" as a BER indicator
 - Account for ASE noise, PMD, node crosstalk, XPM, FWM
 - Network status dependent impairments (XPM, FWM)
 - Lengthy computations
 - Valid for 10Gbps, OOK
- Adaptive wavelength assignment

Diverse Routing Challenge (1/3)

www.ait.edu.gr

 Find two routes (link and node disjoint) from "A" to "F" (1+1 protection)

How to generate diverse path?

Diverse Routing Challenge (3/3)

- Diverse Routing Engine (Two routes from "A" to "F")
- Bhandari Algorithm

Торо-	Scaling	Largest shortest	Nodes	Bidirectio-	Average
logy	factor	path (after scaling)		-nal link	node degree
DTNet	1.3	1162 km	14	23	3.29
EON	0.4	1658 km	19	74	3.85

- Next Generation Core Optical Networks
 - Many studies around
 - Many problem addressed
 - Not many integrated and comprehensive works
- DICONET → Integrated Network Planning and Operation Tool
 - Presented here: Planning Mode/Offline IA-RWA with dedicated path protection
- Future work/Work in progress:
 - Online IA-RWA multi-constraint algorithms
 - Fault management
 - Control plane design and implementation
 - Integrated Network Planning and operation tool
 - FPGA acceleration
 - Validation with testbed

• Question & Answers

- Acknowledgements
 - This work is partially funded by the European Commission (FP7)

Dynamic Impairment Constraint Networking for Transparent Mesh Optical Networks

Building the Future Optical Network in Europe

http://www.diconet.eu

http://www.ict-bone.eu